Semidefinite Programming Hierarchies and the Unique Games Conjecture

David Steurer

Microsoft Research New England

Cornell University

Algorithms Frontiers Workshop, EPFL, Lausanne, June 2012

Plan

Overview

aka Lasserre hierarchy

Sum-of-Squares (SoS) SDP Hierarchy

[Parrilo'00, Lasserre'01]

Rounding SDP Hierarchies via Global Correlation

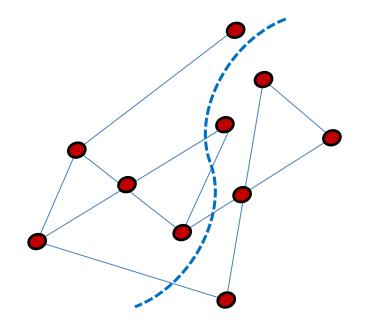
[Arora-Barak-S.'10, Barak-Raghavendra-S.'11]

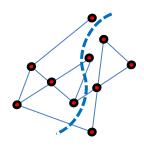
Power of Sum-of-Squares Proofs

[Barak-Brandão-Harrow-Kelner-S.-Zhou'12]

Max Cut

- Given: undirected graph on *n* vertices
- Find: bipartition that cuts as many edges as possible





Given: undirected graph on *n* vertices

Find: bipartition that cuts as many edges as possible

polynomial optimization problem

$$\max_{x \in \{\pm 1\}^n} \sum_{i \sim j} \frac{1}{4} (x_i - x_j)^2$$

simple space

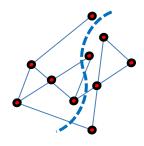
can understand set of polynomials (ideal) vanishing on this set

quadratic polynomial

sum of local terms

 \rightarrow constraint satisfaction problem

(constraints of form $x_i \neq x_j$)

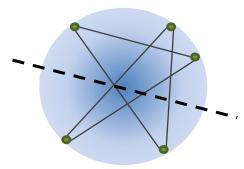


Given: undirected graph on *n* vertices

Find: bipartition that cuts as many edges as possible

best known approximation ratio: $\alpha_{GW} \approx 0.878$... [Goemans-Williamson]

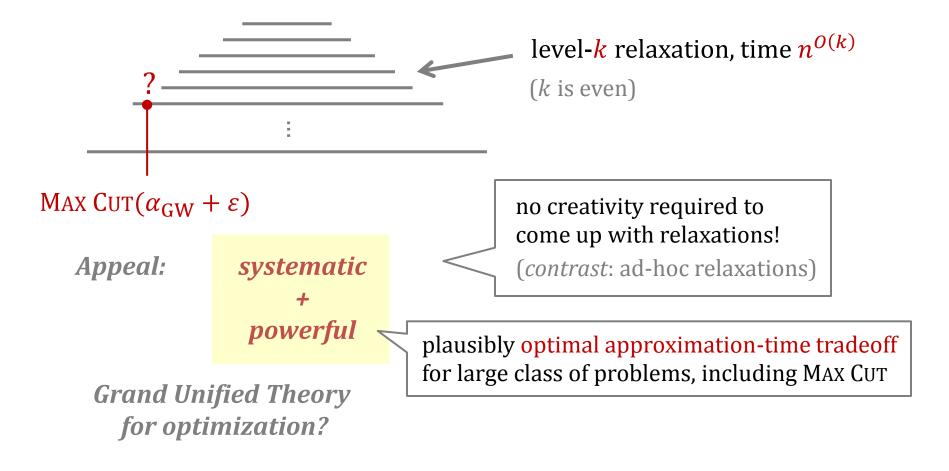
What does it take to beat this bound?



Semidefinite Programming (SDP) Hierarchies

[Sherali-Adams'90, Lovász-Schrijver'91,... Parrilo'00, Lasserre'01]

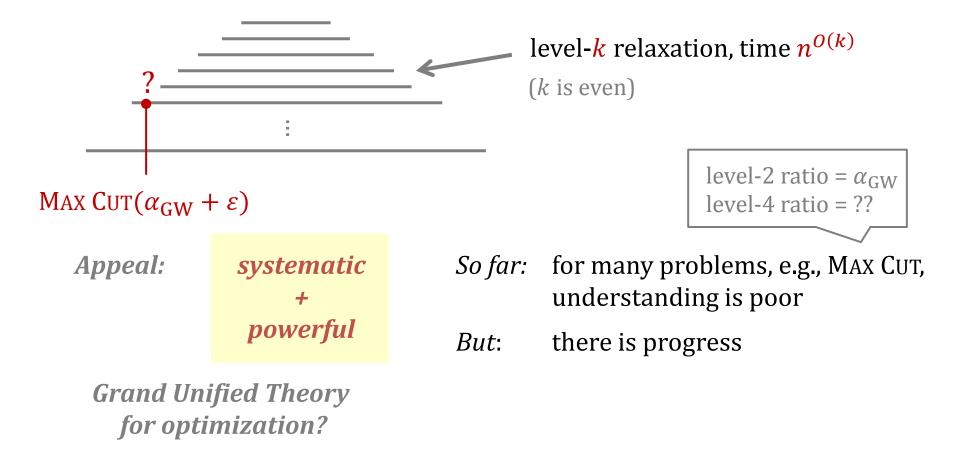
general approach for any combinatorial optimization problem sequence of increasingly stronger SDP relaxations



Semidefinite Programming (SDP) Hierarchies

[Sherali-Adams'90, Lovász-Schrijver'91,... Parrilo'00, Lasserre'01]

general approach for any combinatorial optimization problem sequence of increasingly stronger SDP relaxations



Unique Games Conjecture (UGC) [Khoť 02]

For every $\varepsilon > 0$, the following is **NP**-hard:

Given: system of equations $x_i - x_j = c \mod k$ (say $k = \log n$) *Distinguish:*

YES:at least $1 - \varepsilon$ of equations satisfiableNO:at most ε of equations satisfiable

UG(ε) YES: Unique Games Conjecture (UGC) [Khoť'02]

Implications of UGC

For large class of problems, **BASIC SDP** achieves optimal approximation

Examples: MAX CUT, VERTEX COVER, any MAX CSP

[Khot-Regev'03, Khot-Kindler-Mossel-O'Donnell'04, Mossel-O'Donnell-Oleszkiewicz'05, Raghavendra'08]

Is the conjecture true?

Unique Games Conjecture (UGC) [Khoť 02] Implications of UGC

Is the conjecture true?

Difference to other complexity conjectures

difficulty: seems only barely out of reach (good bang-for-buck!)

plausibility: relatively weak evidence (might very well be false!)

Framework: general & simple approach for analyzing SDP hierarchies

[Barak-Raghavendra-S.'11, Guruswami-Sinop'11]

gives subexponential algorithm for UNIQUE GAMES [Arora-Barak-S.'10]

contrast: many NP-hard approximation problems require exponential time (assuming 3-SAT does)

some other application (later in talk)

Limitations: this approach cannot give much faster algorithms

construction of small-set expanders with many large eigenvalues [Barak-Gopalan-Håstad-Meka-Raghavendra-S.'11] leads to hard instances for weaker SDP hierarchies

New approach: these instances are not hard for (stronger) SDP hierarchies can be solved in a constant number of levels

Plan

Overview

Sum-of-Squares (SoS) SDP Hierarchy

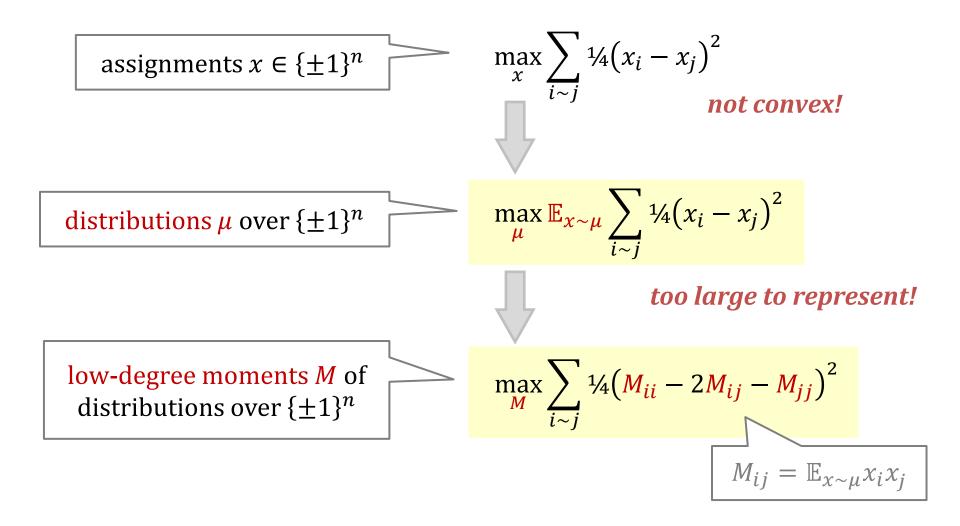
Rounding SDP Hierarchies via Global Correlation

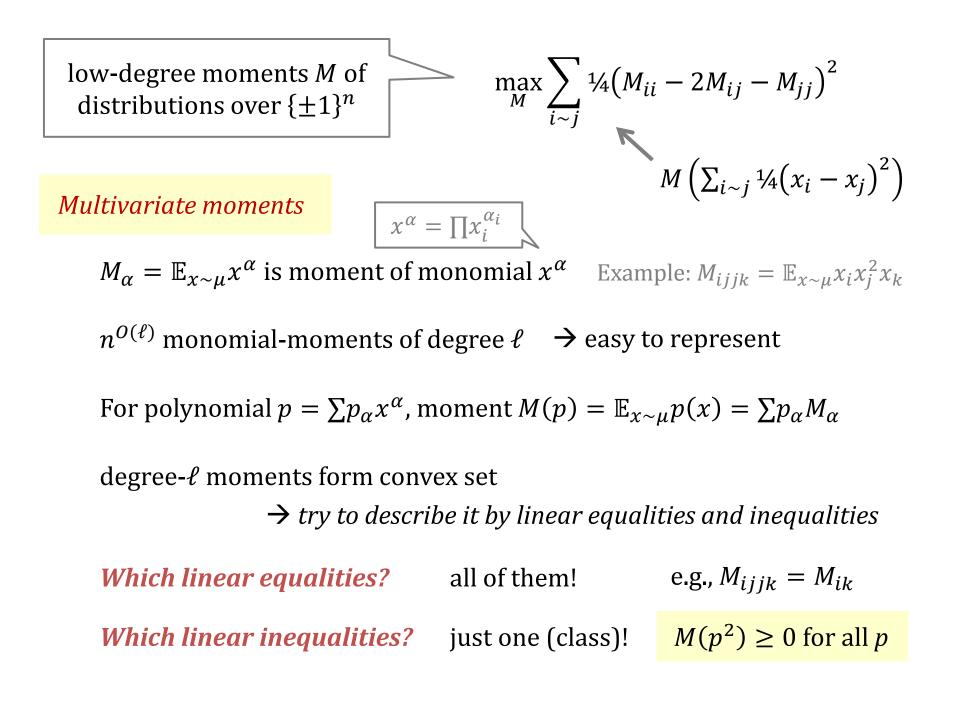
[Arora-Barak-S.'10, Barak-Raghavendra-S.'11]

Power of Sum-of-Squares Proofs

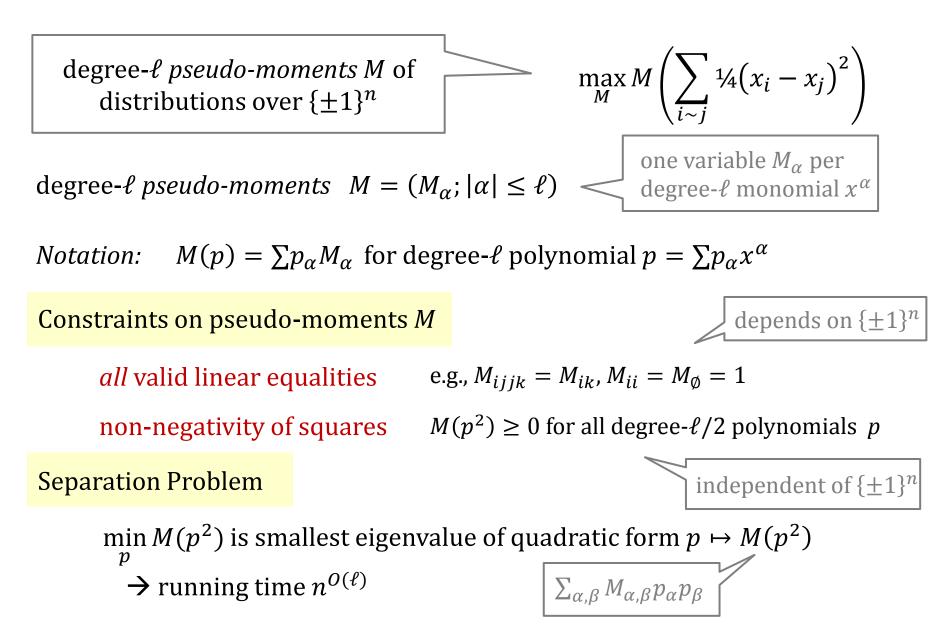
[Barak-Brandão-Harrow-Kelner-S.-Zhou'12]

Three equivalent formulations of MAX CUT





Level-*l* Sum-of-Squares (SoS) relaxation (for MAX CUT)



Plan

Overview

Sum-of-Squares (SoS) SDP Hierarchy

Rounding SDP Hierarchies via Global Correlation

[Arora-Barak-S.'10, Barak-Raghavendra-S.'11]

Power of Sum-of-Squares Proofs

[Barak-Brandão-Harrow-Kelner-S.-Zhou'12]

Subexponential Algorithm for Unique Games UG(ε) in time exp $\left(n^{\varepsilon^{1/3}}\right)$ via level- $n^{\varepsilon^{1/3}}$ SDP relaxation

[Arora-Barak-S.'10, Barak-Raghavendra-S.'11]

Contrast

many NP-hard approximation problems require exponential time (assuming 3-SAT does) [...,Moshkovitz-Raz]

(often these lower bounds are known *unconditionally* for SDP hierarchies) [Schoenebeck, Tulsiani]

 \rightarrow separation of UG from known NP-hard approximation problems

Subexponential Algorithm for Unique Games UG(ε) in time exp $\left(n^{\varepsilon^{1/3}}\right)$ via level- $n^{\varepsilon^{1/3}}$ SDP relaxation

General framework for rounding SDP hierarchies (not restricted to Unique Games) [Barak-Raghavendra-S.'11, Guruswami-Sinop'11]

Potentially applies to wide range of "graph problems" *Examples:* MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP

Some more successes (polynomial time algorithms)

Approximation scheme for general MAX 2-CSP[Barak-Raghavendra-S.'11]on constraint graphs with O(1) significant eigenvalues

Better 3-COLORING approximation for some graph families[Arora-Ge'11]Better approximation for MAX BISECTION (general graphs)[Raghavendra-Tan'12][Austrin-Benabbas-Georgiou'12]

Subexponential Algorithm for Unique Games UG(ε) in time exp $\left(n^{\varepsilon^{1/3}}\right)$ via level- $n^{\varepsilon^{1/3}}$ SDP relaxation

General framework for rounding SDP hierarchies (not restricted to Unique Games) [Barak-Raghavendra-S.'11, Guruswami-Sinop'11]

Potentially applies to wide range of "graph problems" *Examples:* MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP

Key concept: global correlation

Interlude: Pairwise Correlation

Two jointly distributed random variables X and Y

Correlation measures dependence between *X* and *Y*

Does the distribution of X change if we condition Y?

Examples:

(Statistical) distance between $\{X, Y\}$ and $\{X\}\{Y\}$

Covariance **E** XY - (E X)(E Y) (if X and Y are real-valued)

Mutual Information I(X, Y) = H(X) - H(X|Y)

entropy loss due to conditioning

-	
	random variables X_1, \ldots, X_n over \mathbb{Z}_k
Sampling	$\Pr(X_i - X_j = c) \ge 1 - \varepsilon$ for typical constraint $x_i - x_j = c$
Rounding problem	
	degree- ℓ moments of a distribution over
Given	assignments with value $\geq 1 - \varepsilon$
UG instance + <u>level-ℓ SDP solution with value $\geq 1 - \epsilon$</u> ($\ell = n^{O(\epsilon^{1/3})}$)	
Sample	
distribution over assignments with expected value $\geq \varepsilon$	
similar (?)	
More convenient to think about actual distributions	

More convenient to think about actual distributions instead of SDP solutions

But: proof *s*hould only "use" linear equalities satisfied by these moments and *certain* linear inequalities, namely non-negativity of squares

(Can formalize this restriction as proof system \rightarrow later in talk)

Sampling by conditioning

Pick an index *j*

Sample assignment *a* for index *j* from its marginal distribution $\{X_j\}$

Condition distribution on this assignment, $X'_i \coloneqq \{X_i \mid X_j = a\}$

If we condition *n* times, we correctly sample the underlying distribution

Issue: after conditioning step, know only degree $\ell - 1$ moments (instead of degree ℓ)

Hope: need to condition only a small number of times; then do something else

How can conditioning help?

How can conditioning help?

Allows us to assume: distribution has low global correlation

$$\mathbf{E}_{i,j}\mathbf{I}(X_i, X_j) \le O_k(1) \cdot \frac{1}{\ell}$$

typical pair of variables almost pairwise independent

Claim: general cases reduces to case of low global correlation

Proof:

Idea: significant global correlation \rightarrow conditioning decreases entropy Potential function $\Phi = \mathbf{E}_i H(X_i)$

Can always find index *j* such that for $X'_i \coloneqq \{X_i | X_j\}$

 $\Phi - \Phi' \ge \mathbf{E}_i H(X_i) - \mathbf{E}_i H(X_i | X_j) = \mathbf{E}_i I(X_i, X_j) \ge \mathbf{E}_{i,j} I(X_i, X_j)$

Potential can decrease $\leq \ell/2$ times by more than $O_k(1/\ell)$

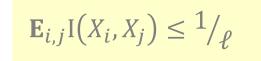
How can conditioning help?

Allows us to assume: distribution has *low global correlation*

$$\mathbf{E}_{i,j}\mathbf{I}(X_i, X_j) \le O_k(1) \cdot \frac{1}{\ell}$$

typical pair of variables almost pairwise independent

How can low global correlation help?



For some problems, this condition alone gives improvement over BASIC SDP

Example: MAX BISECTION [Raghavendra-Tan'12, Austrin-Benabbas-Georgiou'12]

(hyperplane rounding gives near-bisection if global correlation is low)

$$\mathbf{E}_{i,j}\mathbf{I}(X_i,X_j) \leq \frac{1}{\ell}$$

For Unique Games

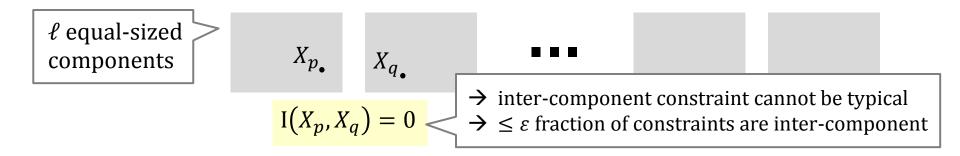
random variables $X_1, ..., X_n$ over \mathbb{Z}_k $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$ for typical constraint $x_i - x_j = c$

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components:

all variables have uniform marginals & \exists partition:



$\mathbf{E}_{i,j}\mathbf{I}(X_i,X_j) \leq \frac{1}{\ell}$

For Unique Games

random variables X_1, \dots, X_n over \mathbb{Z}_k

 $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$ for typical constraint $x_i - x_j = c$

Only

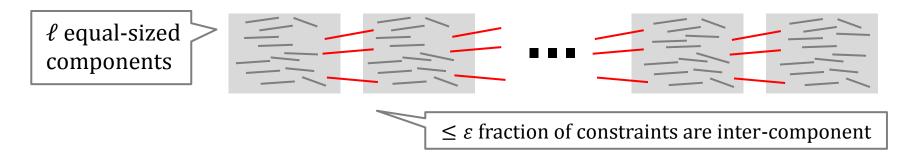
Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components:

Show: no other cases are possible! (informal)

all variables have uniform marginals & \exists partition:



$$\mathbf{E}_{i,j}\mathbf{I}(X_i,X_j) \leq \frac{1}{\ell}$$

For Unique Games

random variables X_1, \ldots, X_n over \mathbb{Z}_k $(-X_i = c) > 1 - \varepsilon$ for typical constraint $x_i - x_i = c$ Dw(V

$$Pr(x_i - x_j = c) \ge 1 - \varepsilon$$
 for typical constraint

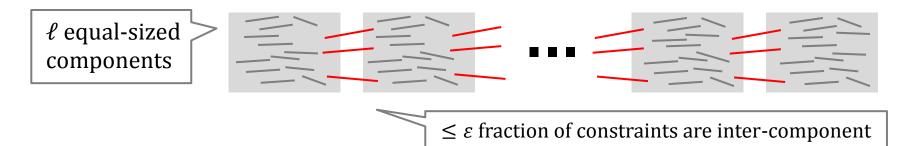
Only

Extreme cases with low global correlation

1) no entropy: all variables are fixed \rightarrow easy to "sample"

2) many small independent components: - 2

all variables have uniform marginals $\& \exists$ partition:



Idea: round components independently & recurse on them

How many edges ignored in total? (between different components)

We chose $\ell = n^{\beta}$ for $\beta \gg \varepsilon$

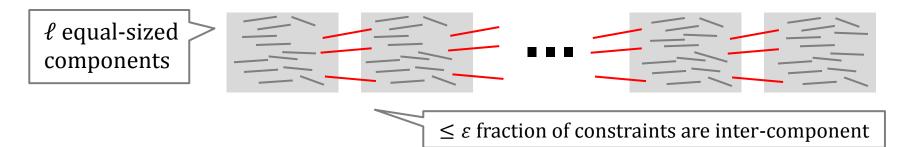
→ each level of recursion decrease component size by factor $\ge n^{\beta}$

- \rightarrow at most $1/\beta$ levels of recursion
- → total fraction of ignored edges $\leq \varepsilon/\beta \ll 1$

→ $2^{n^{\beta}}$ -time algorithm for UG(ε)

2) many small independent components: **?**

all variables have uniform marginals & \exists partition:



$$\mathbf{E}_{i,j}\mathbf{I}(X_i,X_j) \leq \frac{1}{\ell}$$

For Unique Games

random variables $X_1, ..., X_n$ over \mathbb{Z}_k $\Pr(X_i - X_i = c) \ge 1 - \varepsilon$ for typical constraint $x_i - x_i = c$

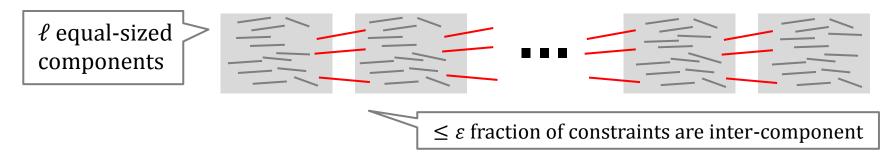
Only

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components:

all variables have uniform marginals & \exists partition:



Proof: global correlation \rightarrow mixing of random walks \rightarrow small-set expansion

Plan

Overview

Sum-of-Squares (SoS) SDP Hierarchy

Rounding SDP Hierarchies via Global Correlation

[Arora-Barak-S.'10, Barak-Raghavendra-S.'11]

Power of Sum-of-Squares Proofs

[Barak-Brandão-Harrow-Kelner-S.-Zhou'12]

SoS hierarchy is a natural candidate algorithm for refuting UGC

Should try to prove that this algorithm fails on *some* instances

Only candidate instances were based on long-code or short-code graph

Result:

Level-8 SoS relaxation refutes UG instances based on *long-code* and *short-code* graphs

We don't know any instances on which this algorithm could potentially fail! Result:

Level-8 SoS relaxation refutes UG instances based on *long-code* and *short-code* graphs

How to prove it? (rounding algorithm?)

Interpret dual as proof system

Show in this proof system that no assignments for these instances exist

We already know "regular" proof of this fact! (soundness proof)

Try to lift this proof to the proof system

qualitative difference to other hierarchies: basis independence

Sum-of-Squares Proof System (informal)

Axioms



Rules

Polynomial operations $R(z)^2 \ge 0$ for any polynomial RIntermediate polynomials have bounded degree (c.f. bounded-width resolution, but basis independent)

Example

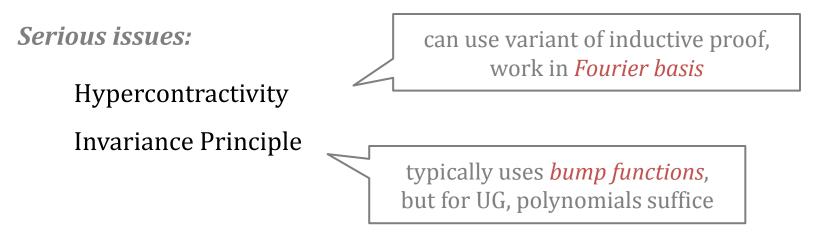
Axiom: $z^2 \le z$ Derive: $z \le 1$ $1 - z = z - z^2 + (1 - z)^2$ $\ge z - z^2$ (non-negativity of squares) ≥ 0 (axiom) *Components of soundness proof* (for known UG instances)

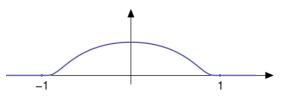
Non-serious issues:

Cauchy–Schwarz / Hölder Influence decoding

$$\langle use \langle x, y \rangle \leq \frac{1}{2} ||x||^2 + \frac{1}{2} ||y||^2$$

instead of $\langle x, y \rangle \leq ||x|| ||y||$





Open Questions

Unique Games Conjecture

Does level-8 of SoS hierarchy refute UGC?

Time vs Approximation Trade-offs

Better approximations for for MAX CUT, VERTEX COVER, ... in subexponential time?

Example:1/ ε -approximation for SPARSEST CUT in time exp(n^{ε})?

Thanks!