Summer school on semidefinite optimization

# Approximation & Complexity

# David Steurer

**Cornell University** 

# Part 1

September 6, 2012

### **Overview**

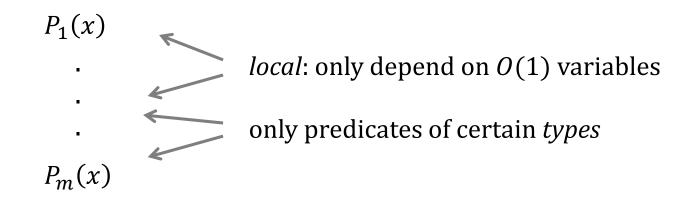
#### Part 1 Unique Games Conjecture & Basic SDP

### Part 2 SDP Hierarchies: Algorithms

### Part 3 SDP Hierarchies: Limits

variables  $x_1, \ldots, x_n$  over finite alphabet  $\Sigma$ 

list of predicates/constraints



Max 3Sat

variables  $x_1, ..., x_n$  over finite alphabet  $\Sigma = \{$ true, false $\}$ list of predicates/constraints

$$P_{1}(x) = x_{1} \lor x_{2} \lor \overline{x_{4}}$$

$$P_{m}(x) = \overline{x_{9}} \lor x_{42} \lor \overline{x_{7}}$$

Max Cut

variables  $x_1, ..., x_n$  over finite alphabet  $\Sigma = \mathbb{F}_2$ list of predicates/constraints  $P_1(x) = \{x_1 + x_2 = 1\}$ 

 $P_m(x) = \{x_{13} + x_5 = 1\}$ 

UNIQUE GAMES(k)

.

.

variables  $x_1, ..., x_n$  over finite alphabet  $\Sigma = \mathbb{F}_k$ list of predicates/constraints

 $P_1(x) = \{x_1 + x_2 = 4\}$ 

value of one variable *uniquely* determines value of other variable

 $P_m(x) = \{x_{13} + x_5 = 9\}$ 

**Optimization & Complexity** 

inherent difficulty, required computational resources

Goal: understand complexity of optimization problems





What are good algorithms?

What are hard instances?

**Optimization & Complexity** 

### *Goal:* understand complexity of optimization problems

require prohibitive resources (assuming P≠NP)

**1970s** Most discrete optimization problems are NP-hard [Cook, Karp, Levin] (including MAX 3SAT, MAX CUT, and UNIQUE GAMES)

### So we can't hope to prove anything and have to resort to heuristics?

No!

Do not (blindly) trust impossibility results!

### *Optimization is not all or nothing! What about approximate solutions?*

(Many classical algorithms for convex optimization are fundamentally approximation algorithms)

Goal

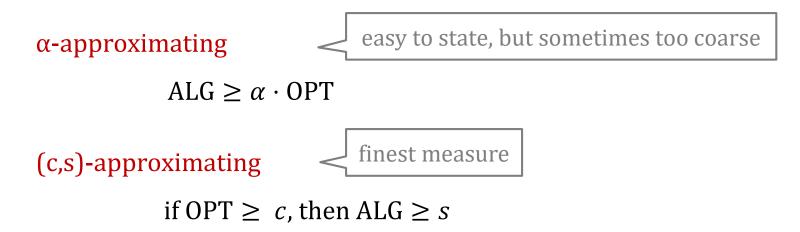
understand trade-off between complexity and approximation

### **Approximation**

Goal

understand trade-off between complexity and approximation

*How to measure approximation?* 



### **Approximation**

Goal

understand trade-off between complexity and approximation

poly-time approximation algorithms:

non-trivial approximations for many problems, e.g., 0.878-approx for MAX CUT [Goemans-Williamson]

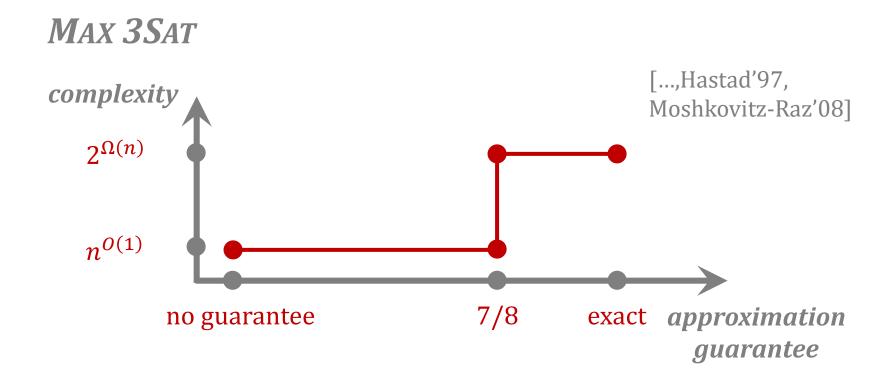
**NP-hardness of approximation** 

as hard as solving it exactly!

for many problems, some approximation is NP-hard e.g., 0.999-approx for MAX CUT [PCP Theorem]

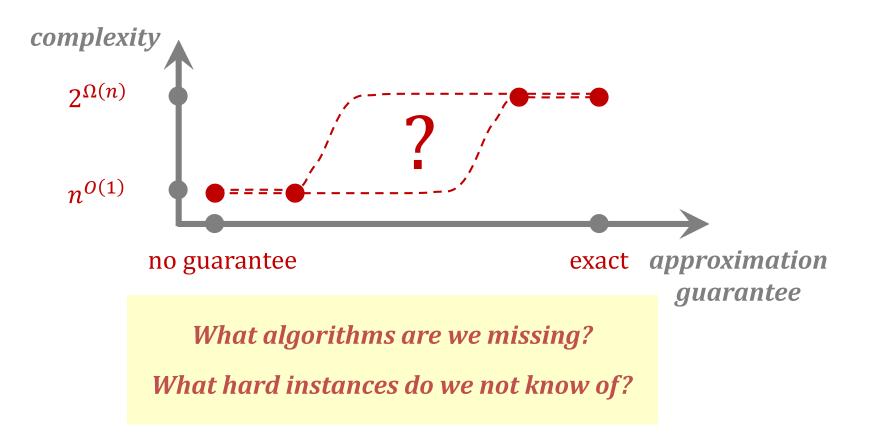
*For very few problems, upper and lower bounds match!* 

### Complexity vs Approximation Trade-off



## Complexity vs Approximation Trade-off

Most other problems



Unique Games Conjecture (UGC)

For every  $\varepsilon > 0$ , there exists k,

[Khot'02]

constraints:  $x_i - x_j = c \mod k$ 

 $(1 - \varepsilon, \varepsilon)$ -approximation for UNIQUE GAMES(k) is NP-hard

**Implications of UGC** 

[Khot-Regev'03, Khot-Kindler-Mossel-O'Donnell'04, Mossel-O'Donnell-Oleszkiewicz'05, Raghavendra'08]

For every CSP, the *Basic SDP relaxation* has optimal integrality gap ( $\rightarrow$  higher-degree sum-of-squares relaxation have same gap)

*Is the conjecture true?* 

### Is the conjecture true?

subexponential-time algorithm[Arora-Barak-S.'10,<br/>Barak-Raghavendra-S.'11] $(1 - \varepsilon, \varepsilon)$ -approximation for UG in time  $\exp\left(n^{\varepsilon^{1/3}}\right)$ contrast: all known hardness results for CSPs imply  $2^{\Omega(n)}$ -hardnesspart of framework for rounding SDP hierarchies

lower bounds for certain SDP hierarchies

[Barak-Gopalan-Håstad-Meka-Raghavendra-S.'11]

subexp.-time essentially optimal within the rounding framework

hard instances based on new kind graphs (with extremal spectral properties)

sum-of-squares relaxations

[Barak-Brandão-Harrow-Kelner-S.-Zhou'12]

"all known" instances of UG are solved in O(1)-degree sos relaxation (including instances that are hard for other SDP hierarchies) *Generic Approximation Algorithm for CSPs* [Raghavendra-S.'09]

For any CSP X,

OPT vs SDP

*approximation* for X = *integrality gap* of Basic SDP for X ALG vs OPT

based on rounding optimal solutions to Basic SDP relaxation

new perspective on previous rounding algorithms, like GW

no explicit approximation guarantee

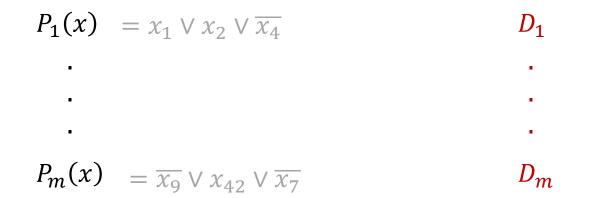
polynomial-time but huge constants (depending on desired accuracy)

**Basic SDP Relaxation for** 

Constraint Satisfaction Problems

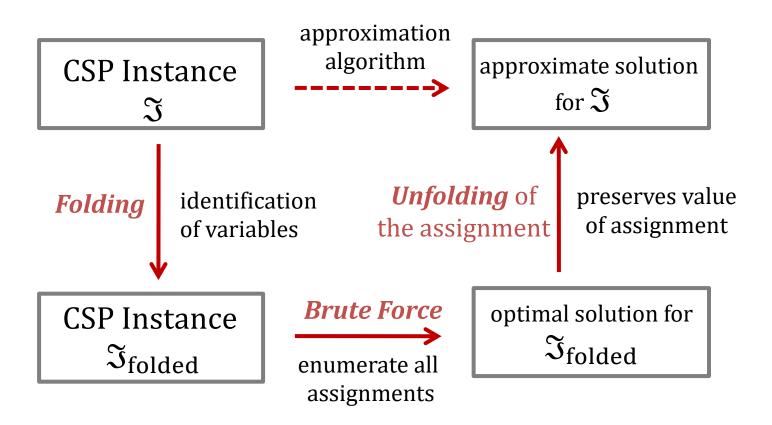
variables  $x_1, ..., x_n$  over finite alphabet  $\Sigma$ list of predicates/constraints first two moments are consistent and positive semidefinite

local distributions



*Goal*: maximize expected number of satisfied predicates

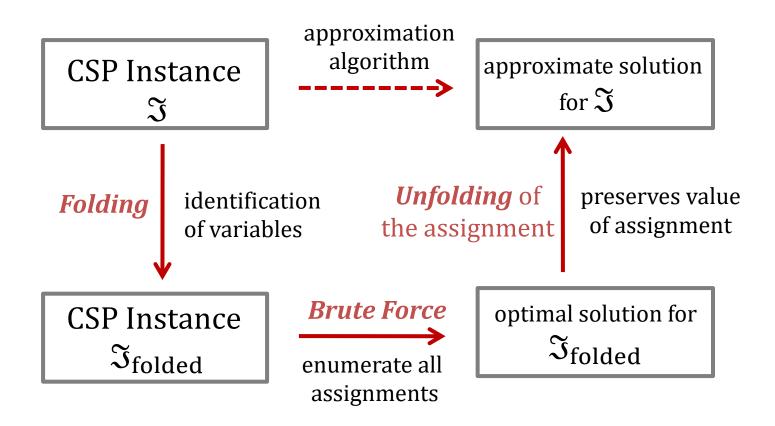
# Approximating CSPs using Folding



"*Efficient*" whenever folding leaves only O(1) distinct variables

*Challenge:* ensure  $\Im_{folded}$  has a good solution

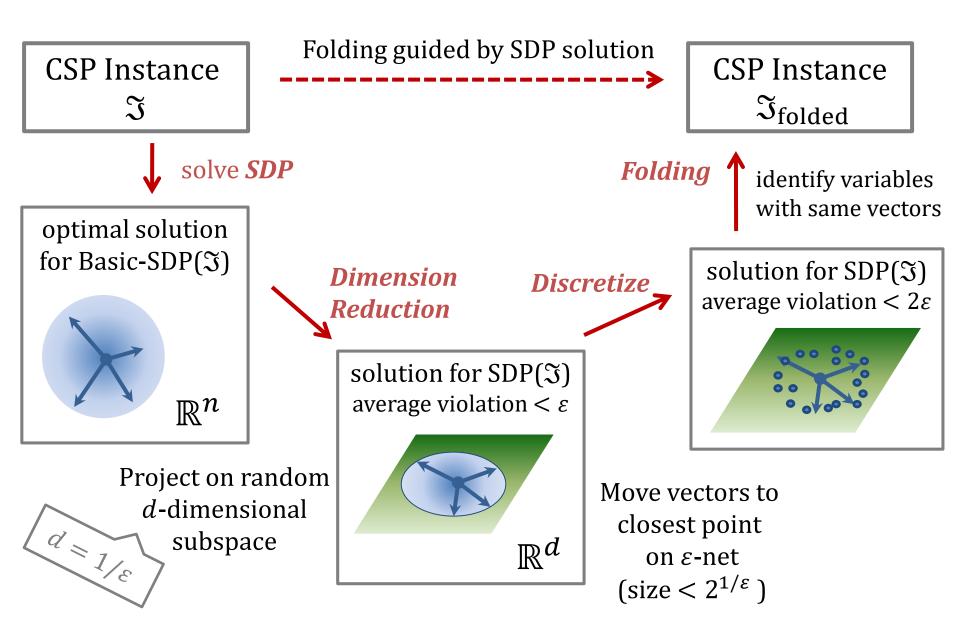
# Approximating CSPs using Folding



**Theorem** can fold every CSP instance efficiently to  $2^{\text{poly}(1/\varepsilon)}$  variables

 $\operatorname{sdp}(\mathfrak{I}_{\operatorname{folded}}) \ge \operatorname{sdp}(\mathfrak{I}) - \varepsilon \longrightarrow \operatorname{optimal rounding scheme}$ 

# How to fold using SDP solutions



# How to fold using SDP solutions



found solution for SDP( $\mathfrak{T}_{folded}$ ) with value  $\geq sdp(\mathfrak{T}) - 2\varepsilon$ 

*But*: some constraints violated, on average by  $\leq 2\varepsilon$ 

*Robustness property* of Basic SDP relaxation

can repair violations at proportional cost for objective value

 $\Rightarrow \operatorname{sdp}(\mathfrak{I}_{folded}) \ge \operatorname{sdp}(\mathfrak{I}) - 4\varepsilon$ 

Summer school on semidefinite optimization

# Approximation & Complexity

# David Steurer

**Cornell University** 

# Part 2

September 7, 2012

### **Overview**

### Part 1 Unique Games Conjecture & Basic SDP

### Part 2 SDP Hierarchies: Algorithms

### Part 3 SDP Hierarchies: Limits

Subexponential Algorithm for Unique Games UG( $\varepsilon$ ) in time exp $\left(n^{\varepsilon^{1/3}}\right)$  via level- $n^{\varepsilon^{1/3}}$  SDP relaxation

General framework for rounding SDP hierarchies (not restricted to Unique Games) [Barak-Raghavendra-S.'11, Guruswami-Sinop'11]

Potentially applies to wide range of "graph problems" *Examples:* MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP

*Some more successes* (polynomial time algorithms)

Approximation scheme for general MAX 2-CSP[Barak-Raghavendra-S.'11]on constraint graphs with O(1) significant eigenvalues

Better 3-COLORING approximation for some graph families[Arora-Ge'11]Better approximation for MAX BISECTION (general graphs)[Raghavendra-Tan'12][Austrin-Benabbas-Georgiou'12]

Subexponential Algorithm for Unique Games UG( $\varepsilon$ ) in time exp $\left(n^{\varepsilon^{1/3}}\right)$  via level- $n^{\varepsilon^{1/3}}$  SDP relaxation

General framework for rounding SDP hierarchies (not restricted to Unique Games) [Barak-Raghavendra-S.'11, Guruswami-Sinop'11]

Potentially applies to wide range of "graph problems" *Examples:* MAX CUT, SPARSEST CUT, COLORING, MAX 2-CSP

Key concept: global correlation

Interlude: Pairwise Correlation

Two jointly distributed random variables X and Y

Correlation measures dependence between X and Y

*Does the distribution of X change if we condition Y?* 

**Examples:** 

(Statistical) distance between  $\{X, Y\}$  and  $\{X\}\{Y\}$ Covariance  $\mathbf{E} XY - (\mathbf{E} X)(\mathbf{E} Y)$  (if X and Y are real-valued) Mutual Information I(X, Y) = H(X) - H(X|Y)

entropy lost due to conditioning

random variables  $X_1, \ldots, X_n$  over  $\mathbb{Z}_k$ Sampling  $\Pr(X_i - X_i = c) \ge 1 - \varepsilon$  for typical constraint  $x_i - x_i = c$ <del>Rounding</del> problem degree- $\ell$  moments of a distribution over assignments with expected value  $\geq 1 - \varepsilon$ Given UG instance + level- $\ell$  SDP solution with value  $\geq 1 - \epsilon$  ( $\ell = n^{O(\epsilon^{1/3})}$ ) Sample distribution over assignments with expected value  $\geq \varepsilon$ similar (?)

### More convenient to think about actual distributions instead of SDP solutions

*But:* proof *s*hould only "use" linear equalities satisfied by these moments and *certain* linear inequalities, namely non-negativity of squares

(Can formalize this restriction as proof system)

Sampling by conditioning

Pick an index *j* 

Sample assignment *a* for index *j* from its marginal distribution  $\{X_j\}$ 

Condition distribution on this assignment,  $X'_i \coloneqq \{X_i \mid X_j = a\}$ 

If we condition *n* times, we correctly sample the underlying distribution

*Issue:* after conditioning step, know only degree  $\ell - 1$  moments (instead of degree  $\ell$ )

Hope: need to condition only a small number of times; then do something else

*How can conditioning help?* 

### *How can conditioning help?*

Allows us to assume: distribution has low global correlation

$$\mathbf{E}_{i,j}\mathbf{I}(X_i, X_j) \le O_k(1) \cdot \frac{1}{\ell}$$

typical pair of variables almost independent

*Claim:* general cases reduces to case of *low global correlation* 

**Proof:** 

*Idea:* significant global correlation  $\rightarrow$  conditioning decreases entropy Potential function  $\Phi = \mathbf{E}_i H(X_i)$ 

Can always find index *j* such that for  $X'_i \coloneqq \{X_i | X_j\}$ 

 $\Phi - \Phi' \geq \mathbf{E}_i H(X_i) - \mathbf{E}_i H(X_i | X_j) = \mathbf{E}_i I(X_i, X_j) \geq \mathbf{E}_{i,j} I(X_i, X_j)$ 

Potential can decrease  $\leq \ell/2$  times by more than  $O_k(1/\ell)$ 

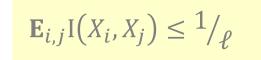
#### *How can conditioning help?*

Allows us to assume: distribution has *low global correlation* 

$$\mathbf{E}_{i,j}\mathbf{I}(X_i, X_j) \le O_k(1) \cdot \frac{1}{\ell}$$

typical pair of variables almost pairwise independent

*How can low global correlation help?* 



#### For some problems, this condition alone gives improvement over BASIC SDP

*Example:* MAX BISECTION [Raghavendra-Tan'12, Austrin-Benabbas-Georgiou'12]

hyperplane rounding gives near-bisection if global correlation is low

$$\mathbf{E}_{i,j}\mathbf{I}(X_i,X_j) \leq \frac{1}{\ell}$$

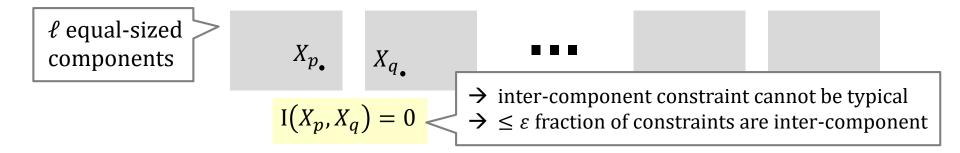
#### For Unique Games

random variables  $X_1, ..., X_n$  over  $\mathbb{Z}_k$  $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$  for typical constraint  $x_i - x_j = c$ 

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components:



$$\mathbf{E}_{i,j}\mathbf{I}(X_i,X_j) \leq \frac{1}{\ell}$$

#### For Unique Games

random variables  $X_1, \dots, X_n$  over  $\mathbb{Z}_k$ 

 $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$  for typical constraint  $x_i - x_j = c$ 

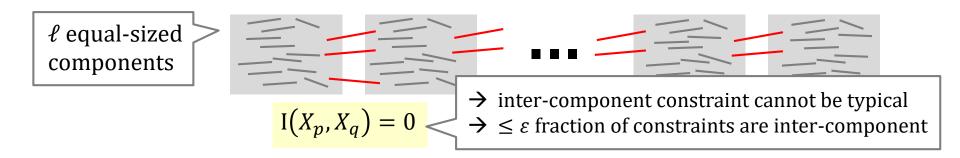
#### Only

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components:

*Show:* no other cases are possible! (informal)



*Idea*: round components independently & recurse on them

How many edges ignored in total? (between different components)

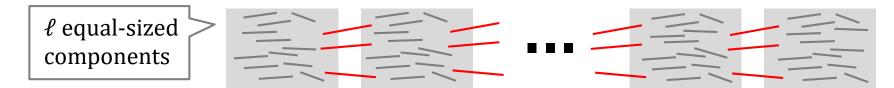
We chose  $\ell = n^{\beta}$  for  $\beta \gg \varepsilon$ 

→ each level of recursion decrease component size by factor  $\ge n^{\beta}$ 

- $\rightarrow$  at most  $1/\beta$  levels of recursion
- → total fraction of ignored edges  $\leq \varepsilon/\beta \ll 1$

→  $2^{n^{\beta}}$ -time algorithm for UG( $\varepsilon$ )

2) many small independent components:



$$\mathbf{E}_{i,j}\mathbf{I}(X_i,X_j) \leq \frac{1}{\ell}$$

#### For Unique Games

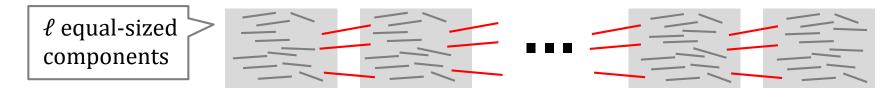
random variables  $X_1, ..., X_n$  over  $\mathbb{Z}_k$  $\Pr(X_i - X_i = c) \ge 1 - \varepsilon$  for typical constraint  $x_i - x_i = c$ 

Only

Extreme cases with low global correlation

1) no entropy: all variables are fixed

2) many small independent components:



**Suppose:** random variables  $X_1, ..., X_n$  over  $\mathbb{Z}_k$  with uniform marginals  $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$  for typical constraint  $x_i - x_j = c$ global correlation  $\le 1/n^{2\beta}$ 

**Then:**  $\exists S \subseteq [n]$ .  $|S| \leq n^{1-\beta}$  & all constraints touching S stay inside of S except for an  $O(\sqrt{\epsilon/\beta})$  fraction (in constraint graph, S has low expansion)

**Proof:** Define 
$$\operatorname{Corr}(X_i, X_j) = \max_c \Pr(X_i - X_j = c)$$

Correlation Propagation For random walk  $i \sim j_1 \sim \cdots \sim j_t$  of length t in constraint graph  $Corr(X_i, X_{j_t}) \ge (1 - \varepsilon)^t$ 

$$\operatorname{Corr}(X_i, X_{j_t}) \gtrsim \operatorname{Pr}(X_i - X_{j_1} = c_1) \cdots \operatorname{Pr}(X_i - X_{j_t} = c_t)$$

proof uses non-negativity of squares (sum-of-squares proof)
→ works also for SDP hierarchy

**Suppose:** random variables  $X_1, ..., X_n$  over  $\mathbb{Z}_k$  with uniform marginals  $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$  for typical constraint  $x_i - x_j = c$ global correlation  $\le 1/n^{2\beta}$ 

**Then:**  $\exists S \subseteq [n]$ .  $|S| \leq n^{1-\beta}$  & all constraints touching S stay inside of S except for an  $O(\sqrt{\epsilon/\beta})$  fraction (in constraint graph, S has low expansion)

**Proof:** Define 
$$\operatorname{Corr}(X_i, X_j) = \max_c \Pr(X_i - X_j = c)$$

Correlation Propagation  $t = \frac{\beta}{\varepsilon} \cdot \log n$ For random walk  $i \sim j_1 \sim \cdots \sim j_t$  of length t in constraint graph  $\operatorname{Corr}(X_i, X_{j_t}) \ge (1 - \varepsilon)^t \ge 1/n^{\beta}$ low global correlation

On the other hand,  $\operatorname{Corr}(X_i, X_j) \leq 1/n^{2\beta}$  for typical j

- $\rightarrow$  random walk from *i* doesn't mix in *t*-steps (actually far from mixing)
- $\rightarrow$  exist small set *S* around *i* with low expansion

**Suppose:** random variables  $X_1, ..., X_n$  over  $\mathbb{Z}_k$  with uniform marginals  $\Pr(X_i - X_j = c) \ge 1 - \varepsilon$  for typical constraint  $x_i - x_j = c$ global correlation  $\le 1/n^{2\beta} - 1/\ell$ 

*Then:* constraint graph has  $\ell$  eigenvalues  $\geq 1 - \epsilon$ 

**Proof:** a graph has  $\ell$  eigenvalues  $\geq \lambda \iff$  $\exists \text{ vectors } v_1, \dots, v_n$ (local: typical edge) $\mathbf{E}_{i \sim j} \langle v_i, v_j \rangle \geq \lambda$ (global: typical pair) $\mathbf{E}_{p,q} \langle v_p, v_q \rangle^2 \leq 1/\ell$  $\mathbf{E}_i ||v_i||^2 = 1$ 

→ For graphs with <  $\ell$  such eigenvalues, algorithm runs in time n<sup> $\ell$ </sup>

#### Thanks!

Summer school on semidefinite optimization

# Approximation & Complexity

# David Steurer

**Cornell University** 

## Part 3

September 7, 2012

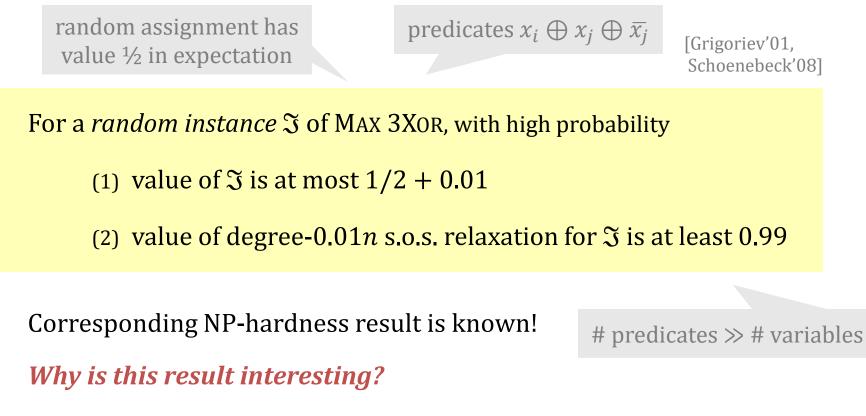
#### **Overview**

#### Part 1 Unique Games Conjecture & Basic SDP

#### Part 2 SDP Hierarchies: Algorithms

#### Part 3 SDP Hierarchies: Limits

### Approximation limits of s.o.s. methods



independent of P vs NP question

suggests random instances are hard

evidence that NP-hard problem take exp. time

### Approximation limits of s.o.s. methods

In terms of polynomials:

# edges  $\gg$  # vertices

random 3-uniform hypergraph *H*, random sign vector  $\sigma \in \{\pm 1\}^H$ 

degree-3 polynomial  $P = \sum_{e \in H} \sigma_e \cdot X^e$ 

Then, w.h.p.,

Chernoff bound over  $\sigma$ 

```
(1) P \le 0.01 over \{\pm 1\}^n
```

(2) all s.o.s. certificate for  $P \leq 0.99$  over  $\{\pm 1\}^n$  have degree  $\Omega(n)$ 

(2') no degree-o(n) s.o.s. refutation of the system  $\{\sigma_e \cdot X^e = 1 \mid e \in H\} \cup \{X_i^2 = 1 \mid i \in V\}$ 

### Interlude: Bounded-width Gaussian Elimination

system of polynomials over  $\{\pm 1\}^n$ 

system of affine linear forms over  $\mathbb{F}_2^n$ 

$$X_{1}X_{2}X_{3} = 1 \qquad \longleftrightarrow \qquad \begin{array}{c} x_{1} + x_{2} + x_{3} = 0 \\ \vdots \\ \vdots \\ -X_{2}X_{6}X_{8} = 1 \end{array} \qquad \longleftrightarrow \qquad \begin{array}{c} x_{1} + x_{2} + x_{3} = 0 \\ \vdots \\ \vdots \\ 1 + x_{2} + x_{6} + x_{8} = 0 \end{array}$$

width-d Gaussian refutation

derivation of 1 = 0 by adding equations of *width*  $\leq d$ 

# variables in equation

### Approximation limits of s.o.s. methods

Part 1random 3-uniform signed hypergraph ( $H, \sigma$ ) $\rightarrow$  corresponding system has elimination width  $\Omega(n)$ 

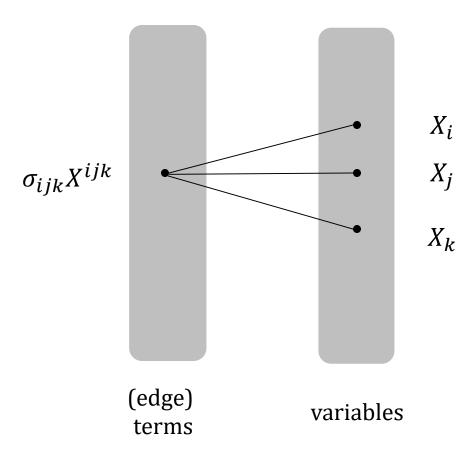
Part 2 For systems we consider,

width-d Gaussian refutation

- $\leftrightarrow$  degree-*d* Nullstellensatz refutation
- $\leftrightarrow$  degree-*d* Positivstellensatz refutation

Random hypergraph system  $\rightarrow$  no width- $\Omega(n)$  Gaussian refutation

#### bipartite graph



vertex sets with |S| < n/100 $\rightarrow \Omega(|S|)$  unique neighbors

 $aX^{\alpha}$  is product of edge terms  $S \rightarrow aX^{\alpha}$  has width  $\geq \Gamma_{\text{unique}}(S)$ 

every refutation contains term  $aX^{\alpha}$ product of  $\approx n/100$  edges terms

No width-10*d* Gaussian refutation  $\rightarrow$  no degree-*d* Positivstellensatz refutation

*How would degree-d s.o.s. refutation look like?* 

 $\exists$  degree-*d* multipliers  $Q_e$ 

1 + S. O. S. = 
$$\sum_{e} Q_{e} \cdot (\sigma_{e} X^{e} - 1)$$
 over  $\{\pm 1\}^{n}$ 

How to construct M? → Gaussian elimination

*To rule out refutation:* 

exhibit linear form *M* on polynomials over  $\{\pm 1\}^n$ 

M(1) = 1  $M(S. 0. S) \ge 0 \qquad \forall S. 0. S$  $M(Q \cdot (\sigma_e X^e - 1)) = 0 \qquad \forall e, \text{ degree-} d Q$ 

No width-10*d* Gaussian refutation  $\rightarrow$  no degree-*d* Positivstellensatz refutation

Let  $\mathcal{E}$  be set of  $aX^{\alpha}$  such that  $aX^{\alpha} = 1$  derived by width-10*d* elimination

*Relation:*  $aX^{\alpha} \sim bX^{\beta}$  if  $aX^{\alpha} = E \cdot bX^{\beta}$  over  $\{\pm 1\}^n$  for some  $E \in \mathcal{E}$ 

*Claim:* equivalence relation on degree-*d* terms

symmetry uses  $X_i^2 = 1$ transitivity uses width > 2*d* 

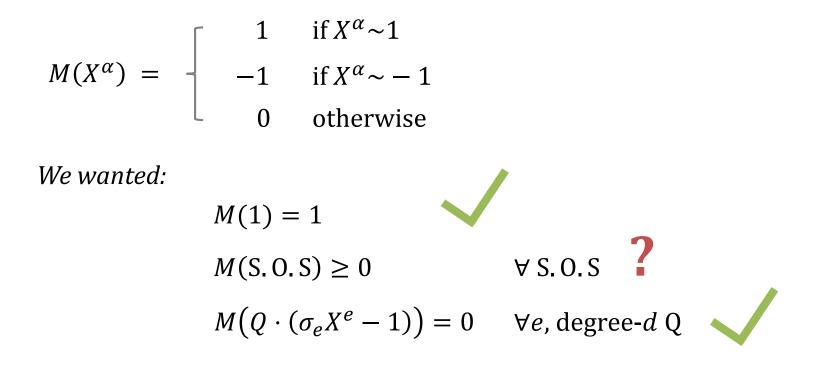
Define:

$$M(X^{\alpha}) = \begin{cases} 1 & \text{if } X^{\alpha} \sim 1 \\ -1 & \text{if } X^{\alpha} \sim -1 \\ 0 & \text{otherwise} \end{cases}$$

No width-10*d* Gaussian refutation  $\rightarrow$  no degree-*d* Positivstellensatz refutation

Let  $\mathcal{E}$  be set of  $aX^{\alpha}$  such that  $aX^{\alpha} = 1$  derived by width-10*d* elimination

*Relation:*  $aX^{\alpha} \sim bX^{\beta}$  if  $aX^{\alpha} = E \cdot bX^{\beta}$  over  $\{\pm 1\}^n$  for some  $E \in \mathcal{E}$ 



No width-10*d* Gaussian refutation  $\rightarrow$  no degree-*d* Positivstellensatz refutation

Let  $\mathcal{E}$  be set of  $aX^{\alpha}$  such that  $aX^{\alpha} = 1$  derived by width-10*d* elimination

*Relation:*  $aX^{\alpha} \sim bX^{\beta}$  if  $aX^{\alpha} = E \cdot bX^{\beta}$  over  $\{\pm 1\}^n$  for some  $E \in \mathcal{E}$ 

$$M(X^{\alpha}) = \begin{cases} 1 & \text{if } X^{\alpha} \sim 1 \\ -1 & \text{if } X^{\alpha} \sim -1 \\ 0 & \text{otherwise} \end{cases} \quad \begin{array}{c} v_{1} & v_{2} & v_{r} \\ v_{1} & c_{2}^{+} & c_{r}^{+} \\ C_{1}^{+} & c_{2}^{+} & c_{r}^{+} \\ c_{1}^{-} & c_{2}^{-} & c_{r}^{-} \\ c_{1}^{-} & c_{1}^{-} & c_{2}^{-} \\ c_{1}^{-} & c_{2}^{-} & c_{r}^{-} \\ c_{1}^{-} & c_{1}^{-} & c_{1}^{-} \\ c_{1}^{-} & c_{1}^{-} & c_{1}$$