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ABSTRACT
We present an efficient algorithm to find a good solution to
the Unique Games problem when the constraint graph is an
expander.

We introduce a new analysis of the standard SDP in this
case that involves correlations among distant vertices. It
also leads to a parallel repetition theorem for unique games
when the graph is an expander.
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Unique Games is a constraint satisfaction problem where
one is given a constraint graph G = (V,E), a label set [k] and
for each edge e = (u, v), a bijective mapping πuv : [k] 7→ [k].
The goal is to assign to each vertex in G a label from [k]
so as to maximize the fraction of the constraints that are
“satisfied,” where an edge e = (u, v) is said to be satisfied
by an assignment if u is assigned a label i and v is assigned
a label j such that πuv(i) = j. The value of a labeling
Λ: V → [k] is the fraction of the constraints satisfied by it
and is denoted by val(Λ). For a Unique Games instance
U , we denote by opt(U) the maximum value of val(Λ) over
all labelings. This optimization problem was first consid-
ered by Cai, Condon, and Lipton [3]. The Unique Games
Conjecture (UGC) of Khot [12] asserts that for such a con-
straint satisfaction problem, for arbitrarily small constants
η, ζ > 0, it is NP-hard to decide whether there is a labeling
that satisfies 1 − η fraction of the constraints or, for every
labeling, the fraction of the constraints satisfied is at most
ζ as long as the size of the label set, k, is allowed to grow as
a function of η and ζ.

Since its origin, the UGC has been successfully used to
prove (often optimal) hardness of approximation results for
several important NP-hard problems such as MIN-2SAT-
DELETION [12], Vertex Cover [14], Maximum Cut [13],
Graph Coloring [8], and non-uniform Sparsest Cut [5,
15]. However, one fundamental problem that has resisted
attempts to prove inapproximability results, even assum-
ing UGC, is the (uniform) Sparsest Cut problem. This
problem has aO(

√
logn) approximation algorithm by Arora,

Rao, and Vazirani [2], but no hardness result beyond NP-
hardness is known (recently, in [1], a PTAS is ruled out un-
der a complexity assumption stronger than P 6= NP). In
fact, it seems unlikely that there is a reduction from Unique
Games to Sparsest Cut, unless one assumes that the start-
ing Unique Games instance has some expansion property.
This is because if the Unique Games instance itself has a
sparse cut, then the instance of Sparsest Cut produced
by such a reduction also has a sparse cut (this is certainly
the case for known reductions, i.e. [5, 15]), irrespective of
whether the Unique Games instance is a YES or a NO in-
stance. This motivates the following question: is Unique
Games problem hard even with the promise that the con-
straint graph is an expander? A priori, this could be true
even with a very strong notion of expansion (as some of the
authors of this paper speculated), leading to a superconstant



hardness result for Sparsest Cut and related problems like
Minimum Linear Arrangement.

In this paper, we show that the Unique Games problem is
actually easy when the constraint graph is even a relatively
weak expander. One notion of expansion that we consider
in this paper is when the second smallest eigenvalue of the
normalized Laplacian of a graph G, denoted by λ := λ2(G),
is bounded away from 0. We note that the size of balanced
cuts (relative to the total number of edges) in a graph is also
a useful notion of expansion and the results in this paper can
be extended to work in that setting.

Our main result.
We show the following theorem in Section 2:

Theorem 1.1. There is a polynomial time algorithm for
Unique Games that, given η > 0, distinguishes between the
following two cases:

• YES case: There is a labeling which satisfies at least
1− η fraction of the constraints.

• NO case: Every labeling satisfies less than 1 −
O( η

λ
log(λ

η
)) fraction of the constraints.

A consequence of the result is that when the Unique Games
instance is (1−η)-satisfiable and λ� η, the algorithm finds
a labeling to the Unique Games instance that satisfies 99%
of the constraints. An important feature of the algorithm
is that its performance does not depend on the number of
labels k.

Comparison to previous work.
Most of the algorithms for Unique Games (which can

be viewed as attempts to disprove the UGC) are based on
the SDP relaxation proposed by Feige and Lovász [9]. Their
paper showed that if the Unique Games instance is unsatis-
fiable, then the value of the SDP relaxation is bounded away
from 1, though they did not give quantitative bounds. Khot
[12] gave a SDP-rounding algorithm to find a labeling that

satisfies 1 − O(k2η1/5 log(1/η)) fraction of the constraints
when there exists a labeling that satisfies 1 − η fraction of
the constraints. The SDP’s analysis was then revisited by
many papers. On an (1−η)-satisfiable instance, these papers
obtain a labeling that satisfies at least 1−f(η, n, k) fraction
of the constraints where f(η, n, k) is 3

√
η logn in Trevisan

[22],
√
η log k in Charikar, Makarychev, and Makarychev [4],

η
√

logn log k in Chlamtac, Makarychev, and Makarychev
[6], and η logn via an LP based approach in Gupta and
Talwar [10]. Trevisan [22] also gave a combinatorial al-
gorithm that works well on expanders. On an (1 − η)-
satisfiable instance, he showed how to obtain a labeling sat-
isfying 1− η logn log 1

λ
fraction of the constraints. All these

results require η to go to 0 as either n or k go to infinity in
order to maintain their applicability1. Our main result is the
first of its kind where under an additional promise of a nat-
ural graph property, namely expansion, the performance of
the algorithm is independent of k and n. Furthermore, our
analysis steps away from the edge-by-edge analysis of previ-
ous papers in favor of a more global analysis of correlations,
which may be useful for other problems. We also provide

1On the other hand, the UGC allows k to grow arbitrarily
as a function of η, and therefore, all known algorithms fall
short of disproving UGC.

an integrality gap for this SDP to show that, quantitatively,
our main result is tight up to log factors.

We note that if we impose a certain structure on our con-
straints, namely if they are of the form ΓMAX2LIN, our re-
sults continue to hold when λ is replaced by stronger re-
laxations for the expansion of G, similar in spirit to the
relaxations obtained by SDP hierarchies [18, 16, 17]. In par-
ticular, we show that λ can be replaced by the value of such
a relaxation for expansion of G after a constant number of
rounds.

Application to parallel repetition.
Since our main result shows an upper bound on the in-

tegrality gap for the standard SDP, the analysis of Feige
and Lovász [9] allows us to prove (see Section 3) a par-
allel repetition theorem for unique games with expansion.
We show that the r-round parallel repetition value of a
Unique Games instance with value at most 1−ε is at most
(1 − Ω(ε · λ/ log 1

ε
))r. In addition to providing an alternate

proof, when λ � ε2 log(1/ε), this is better than the gen-
eral bound for nonunique games, where the best bound is
(1−Ω(ε3/ log k))r by Holenstein [11], improving upon Raz’s
Theorem [19]. We note that recently, Safra and Schwartz
[21] also showed a parallel repetition theorem for games with
expansion, and their result works even for general games.
Also, Rao [20] has proved a better parallel repetition theo-
rem for, so called, projection games, which are more general
than unique games. His result does not assume any expan-
sion of the game graph.

Randomly generated games.
For many constraint satisfaction problems such as 3SAT,

solving randomly generated instances is of great interest.
For instance, proving unsatisfiability of formulae on n vari-
ables and with dn randomly chosen clauses seems very diffi-
cult for d�

√
n. Our results suggest that it will be hard to

define a model of probabilistic generation for unique games
that will result in very difficult instances, since the natural
models all lead to instances with high expansion.

2. MAIN RESULT
Let U = (G(V,E), [k], {πuv}(u,v)∈E) be a Unique Games

instance. We use the standard SDP relaxation for the prob-
lem, which involves finding a vector assignment for each ver-
tex.

For every u ∈ V, we associate a set of k orthogonal vectors
{u1, . . . ,uk}. The intention is that if i0 ∈ [k] is a label for

vertex u ∈ V , then ui0 =
√
k1, and ui = 0 for all i 6= i0.

Here, 1 is some fixed unit vector and 0 is the zero-vector. Of
course, in a general solution to the SDP this may no longer
be true and {u1,u2, . . . ,uk} is just any set of orthogonal
vectors.
Our proof will use the fact that the objective function (1)
can be rewritten as

1− 1
2
Ee=(u,v)∈EEi∈[k]

∥∥ui − vπuv(i)

∥∥2
(5)

2.1 Overview
Let U = (G(V,E), [k], {πuv}(u,v)∈E) be a Unique Games

instance, and let {ui}u∈V,i∈[k] be an optimal SDP solution.
Assume wlog that its value is 1−η, since otherwise we know
already that the instance is a NO instance. How do we
extract a labeling from the vector solution?



Maximize Ee=(u,v)∈EEi∈[k]

〈
ui,vπuv(i)

〉
(1)

Subject to

∀ u ∈ V Ei∈[k] ‖ui‖2 = 1 (2)

∀ u ∈ V ∀ i 6= j 〈ui,uj〉 = 0 (3)

∀ u, v ∈ V ∀ i, j 〈ui,vj〉 ≥ 0 (4)

Figure 1: SDP for Unique Games

Constraint (2) suggests an obvious way to view the vec-
tors corresponding to vertex u as a distribution on labels,
namely, one that assigns probability label i to u with proba-
bility 1

k
‖ui‖2. The most naive idea for a rounding algorithm

would be to use this distribution to pick a label for each
vertex, where the choice for different vertices is made inde-
pendently. Of course, this doesn’t work since all labels could
have equal probability under this distribution and thus the
chance that the labels i, j picked for vertices u, v in an edge
e satisfy πe(i) = j is only 1/k.

More sophisticated roundings use the fact that if the SDP
value is 1− η for some small η, then the vector assignments
to the vertices of an average edge e = (u, v) are highly corre-
lated, in the sense that for “many” i,

〈
ui,vπ(i)

〉
> 1− Ω(η)

where ui denotes the unit vector in the direction of ui. This
suggests many rounding possibilities as explored in previous
papers [12, 22, 4], but counterexamples [15] show that this
edge-by-edge analysis can only go so far: high correlation for
edges does not by itself imply that a good global assignment
exists.

The main idea in our work is to try to understand and
exploit correlations in the vector assignments for vertices
that are not necessarily adjacent. If u, v are not adjacent
vertices we can try to identify the correlation between their
vector assignments by noting that since the vj ’s are mutu-
ally orthogonal, for each ui there is at most one vj such
that 〈ui,vj〉 > 1/

√
2. Thus we can set up a maximal par-

tial matching among their labels where the matching con-
tains label pairs (i, j) such that 〈ui,vj〉 > 1/

√
2. The vector

assignments to the two vertices can be thought of as highly
correlated if the sum of squared `2 norm of all the ui’s (resp,
all vj ’s) involved in this matching is close to k. (This is a
rough idea; see precise definition later.)

Our main contribution is to show that if the constraint
graph is an expander then high correlation over edges neces-
sarily implies high expected correlation between a randomly-
chosen pair of vertices (which may be quite distant in the
constraint graph). We also show that this allows us to con-
struct a good global assignment. This is formalized below.

2.2 Rounding procedure and correctness
proof

Now we describe our randomized rounding procedure R,
which outputs a labeling Λalg : V → [k]. This uses a more
precise version of the greedy matching outlined in the above
overview. For a pair u, v of vertices (possibly nonadjacent),
let σuv : [k] → [k] be a bijective mapping that maximizes
Ei∈[k]

〈
ui,vσuv(i)

〉
; note that it can be efficiently found using

max-weight bipartite matching. The procedure is as follows:

1. Pick a random vertex u.

2. Pick a label i for u from the distribution, where every
label i′ ∈ [k] has probability 1

k
‖ui′‖2.

3. Define Λalg(v) := σuv(i) for every vertex v ∈ V .

(Of course, the rounding can be trivially derandomized since
there are only nk choices for u, i.)

To analyse this procedure we define the distance ρ(u, v)
of a pair u, v of vertices as

ρ(u, v) :=
1

2
Ei∈[k]

∥∥ui − vσuv(i)

∥∥2
(6)

= 1−Ei∈[k]

〈
ui,vσuv(i)

〉
(using (2)).

We think of two vertices u and v as highly correlated if
ρ(u, v) is small, i.e., Ei∈[k]

〈
ui,vσuv(i)

〉
≈ 1.

The following easy lemma shows that if the average vertex
pair in G is highly correlated, then the above rounding pro-
cedure is likely to produce a good a labeling. Here we assume
that G is a regular graph. Using standard arguments, all re-
sults can be generalized to the case of non-regular graphs.
A proof of the lemma can be found in Section 2.2.

Lemma 2.1 (Global Corr. =⇒ High Value).
The expected fraction of constraints satisfied by the labeling
Λalg computed by the rounding procedure is

EΛalg←R[ val(Λalg) ] ≥ 1− 3η − 6Eu,v∈V [ ρ(u, v) ].

It is easy to see that if the SDP value is 1 − η then the
average correlation on edges is high. For an edge e = (u, v)

in G, let ηe := 1
2
Ei∈[k]

∥∥ui − vπuv(i)

∥∥2
. Note, Ee[ηe] = η.

Then we have

ρ(u, v) =
1

2
Ei∈[k]

∥∥ui − vσuv(i)

∥∥2
= 1−Ei∈[k]

〈
ui,vσuv(i)

〉
≤ 1−Ei∈[k]

〈
ui,vπuv(i)

〉
= ηe

(since σuv is a max-weight matching).

As mentioned in the overview, we show that high correlation
on edges implies (when the constraint graph is an expander)
high correlation on the average pair of vertices. The main
technical contribution in this proof is a way to view a vector
solution to the above SDP as a vector solution for Sparsest
Cut. This involves mapping any sequence of k vectors to
a single vector in a nicely continuous way, which allows us
to show that the distances ρ(u, v) essentially behave like
squared Euclidean distances. We defer the proof of the next
lemma to Section 2.3.

Lemma 2.2 (Low Distortion Embedding of ρ).
For every positive even integer t and every SDP solution
{ui}u∈V,i∈[k], there exists a set of vectors {Vu}u∈V such
that for every pair u, v of vertices

1
2t
‖Vu −Vv‖2 ≤ ρ(u, v) ≤ ‖Vu −Vv‖2 +O(2−t/2).

Corollary 2.3 (Local Corr. =⇒ Global Corr.).

Eu,v∈V [ ρ(u, v) ] ≤ 2tη/λ+O(2−t/2).

Proof. We use the following characterization of λ for
regular graphs G

λ = min
E(u,v)∈E ‖zu − zv‖2

Eu,v∈V ‖zu − zv‖2
, (7)

where the minimum is over all sets of vectors {zu}u∈V .
This characterization also shows that λ scaled by



n2/|E| is a relaxation for the Sparsest Cut problem
min∅6=S⊂V |E(S, S)|/|S||S| of G . Now using the previous
Lemma we have

Eu,v∈V [ ρ(u, v) ] ≤ Eu,v∈V ‖Vu −Vv‖2 +O(2−t/2)

≤ 1
λ
E(u,v)∈E ‖Vu −Vv‖2 +O(2−t/2)

≤ 2t
λ
E(u,v)∈E [ ρ(u, v) ] +O(2−t/2).

By combining the Corollary 2.3 and Lemma 2.1, we can show
the following theorem.

Theorem 2.4 (implies Theorem 1.1). There is a
polynomial time algorithm that computes a labeling Λ with

val(Λ) ≥ 1−O
(
η
λ

log
(
λ
η

))
if the optimal value of the SDP in Figure 1 for U is 1− η.

Proof. By Corollary 2.3 and Lemma 2.1, the labeling
Λalg satisfies a 1−O(tη/λ+2−t/2) fraction of the constraints
of U . If we choose t to be an integer close to 2 log(λ/η), it
follows that opt(U) ≥ 1 − O( η

λ
log(λ

η
)). Since the rounding

procedure R can easily be derandomized, a labeling Λ with
val(Λ) ≥ 1 − O( η

λ
log(λ

η
)) can be computed in polynomial

time.

We can show that the integrality gap (in terms of expansion)
implied above is tight up to a logarithmic factor. The next
theorem can be derived using the techniques in [15, 7]. The
proof is deferred to Appendix A.3.

Theorem 2.5. For every η > 0 small enough and for
every n large enough, there is a Unique Games instance Uη
on Θ(log(n)) labels and a constraint graph with λ = Ω(η),
such that (1) opt(Uη) ≤ 1/ logη n, and (2) there is an SDP
solution for Uη of value at least 1−O(η).

The next theorem shows that, assuming UGC, the approx-
imation guarantee of Theorem 2.4 cannot be improved by
more than a constant factor. The proof is deferred to Ap-
pendix A.3.

Theorem 2.6. Assuming UGC, for every η, δ > 0, there
exists k = k(η, δ) such that for a Unique Games in-
stance U = (G(V,E), [k], {πuv}(u,v)∈E) it is NP-hard to dis-
tinguish between

• YES Case: opt(U) ≥ 1− η,

• NO Case: opt(U) ≤ δ and λ > Ω(η).

2.3 Proof of Lemma 2.1
We consider the labeling Λalg computed by the random-

ized rounding procedure R. Recall that Λalg(v) = σuv(i)
where the vertex u is chosen uniformly at random and the
label i is chosen with probability proportional to ‖ui‖2. For
notational ease we assume that σuu is the identity permu-
tation and σuv is the inverse permutation of σvu. The fol-
lowing claim gives an estimate on the probability that the
constraint between an edge e = {v, w} is satisfied by Λalg.
Here we condition on the choice of u.

Claim 2.7. For every vertex u and every edge e = (v, w),
PrΛalg [Λalg(w) 6= πv,w(Λalg(v)) | u] ≤ 3 · (ρ(u, v) + ηe +
ρ(w, u)).

Proof. We may assume that both σuv and σuw are
the identity permutation. Let π = πvw. First note
PrΛalg [Λalg(w) 6= π(Λalg(v)) | u] = Ei∈[k]

[
‖ui‖2 χi6=π(i)

]
,

where χE denotes the indicator random variable for an event
E . By orthogonality of the vectors {ui}i∈[k], it follows that

Ei∈[k]

[
‖ui‖2 χi 6=π(i)

]
≤ 1

2
Ei∈[k]

[(
‖ui‖2 +

∥∥uπ(i)

∥∥2
)
χi6=π(i)

]
= 1

2
Ei∈[k]

∥∥ui − uπ(i)

∥∥2
.

By triangle inequality,
∥∥ui − uπ(i)

∥∥ ≤ ‖ui − vi‖ +∥∥vi −wπ(i)

∥∥ +
∥∥wπ(i) − uπ(i)

∥∥. Now we square
both sides of the inequality and take expecta-

tions, Ei∈[k]

∥∥ui − uπ(i)

∥∥2 ≤ 3Ei∈[k] ‖ui − vi‖2 +

3Ei∈[k]

∥∥vi −wπ(i)

∥∥2
+ 3Ei∈[k]

∥∥wπ(i) − uπ(i)

∥∥2
=

6ρ(u, v) + 6ηe + 6ρ(w, u).

Proof of Lemma 2.1. From Claim 2.7 it follows

EΛalg [ val(Λalg) ] ≥ 1−3Eu∈VEe=(vw)∈E [ρ(u, v) + ηe + ρ(w, u)] .

Since G is a regular graph, both (u, v) and (w, u) are
uniformly distributed over all pairs of vertices. Hence
EΛalg [ val(Λalg) ] ≥ 1− 3η − 6Eu,v∈V [ ρ(u, v) ].

2.4 Proof of Lemma 2.2; the tensoring trick
Let t be an integer greater than or equal to 4, and
{ui}u∈V,i∈[k] be an SDP solution for U . Define ui = 1

‖ui‖
ui

and Vu = 1√
k

∑
i∈[k] ‖ui‖u

⊗t
i , where ⊗t denotes t-wise ten-

soring. Notice that the vectors Vu are unit vectors. Con-
sider a pair u, v of vertices in G. The following claim implies
the lower bound on ρ(u, v) in Lemma 2.2.

Claim 2.8. ‖Vu −Vv‖2 ≤ t ·Ei∈[k]

∥∥ui − vσuv(i)

∥∥2

Proof. Since Vu is a unit vector for each u, it suffices
to prove 〈Vu,Vv〉 ≥ 1− tρ(u, v). Let σ = σuv. By Cauchy-
Schwarz,

1
k

∑
i ‖ui‖‖vσ(i)‖ ≤ 1

k

(∑
i ‖ui‖

2
)1/2(∑

i ‖vσ(i)‖2
)1/2 ≤ 1.

Thus there is some α ≥ 1 such that the following ran-
dom variable X is well-defined: it takes value

〈
ui,vσ(i)

〉
with probability α · 1

k
‖ui‖‖vσ(i)‖. By Jensen’s Inequality,

(E[X])t ≤ E[Xt]. Hence,

1− ρ(u, v)t ≤ (1− ρ(u, v))t =
(
Ei∈[k]

[
‖ui‖‖vσ(i)‖

〈
ui,vσ(i)

〉])t
= (E[X/α])t ≤ (E[X])t/α

≤ E[Xt/α] = 〈Vu,Vv〉 .

This proves the claim.

Matching between two label sets.
In order to finish the proof of Lemma 2.2, it remains to

prove the upper bound on ρ(u, v) in terms of the distance
‖Vu −Vv‖2. For this part of the proof, it is essential that
the vectors Vu are composed of (high) tensor powers of the
vectors ui. For a pair u, v of vertices, consider the following
set of label pairs

M = {(i, j) ∈ [k]× [k] | 〈ui,vj〉2 > 1/2}.

Since {ui}i∈[k] and {vj}j∈[k] are sets of ortho-normal vec-
tors, M as bipartite graph between the labels for u and the
labels for v is a (partial) matching, that is, every label for u



has at most one neighbor among the labels for v. Let σ be
an arbitrary permutation of [k] that agrees with the M on
the matched labels, i.e., for all (i, j) ∈M , we have σ(i) = j.
The following claim shows the upper bound on ρ(u, v) of
Lemma 2.2.

Claim 2.9.

1

2
Ei∈[k]

∥∥ui − vσ(i)

∥∥2 ≤ 1

2
‖Vu −Vv‖2 +O(2−t/2).

Proof. Let δ = ‖Vu −Vv‖2. Note that

1
k

∑
i,j

‖ui‖‖vj‖ 〈ui,vj〉t = 1− δ/2. (8)

We may assume that σ is the identity permutation. Then,
ρ(u, v) is at most

1
2
Ei∈[k] ‖ui − vi‖2 = 1−Ei∈[k] 〈ui,vi〉

≤ 1− 1
k

∑
i∈[k]

‖ui‖ ‖vi‖ 〈ui,vi〉t

(using 〈ui,vi〉 ≥ 0)

= δ/2 + 1
k

∑
i6=j

‖ui‖‖vj‖ 〈ui,vj〉t

(by (8))

= δ/2 + 〈p, Aq〉 ,

where pi = 1√
k
‖ui‖, qj = 1√

k
‖vj‖, Aii = 0, and for i 6= j,

Aij = 〈ui,vj〉t. Since both p and q are unit vectors, 〈p, Aq〉
is bounded by the largest singular value of A. As the matrix
A has only non-negative entries, its largest singular value is
bounded by the maximum sum of a row or a column. By
symmetry, we may assume that the first row has the largest
sum among all rows and columns. We rearrange the columns
in such a way that A11 ≥ A12 ≥ . . . ≥ A1k. Since u1 is a
unit vector and {vj}j∈[k] is a set of orthonormal vectors, we

have
∑
j 〈u1,vj〉2 ≤ 1. Hence, 〈u1,vj〉2 ≤ 1/j and therefore

A1j ≤ (1/j)t/2. On the other, every entry of A is at most

2−t/2, since all pairs (i, j) with 〈ui,vj〉2 > 1/2 participate
in the matching M , and hence, Aij = 0 for all i, j with
〈ui,vj〉2 > 1/2. It follows that the sum of the first row can
be upper bounded by∑
j∈[k]

A1j ≤ A11 +

∞∑
j≥2

( 1
j
)t/2 ≤ 2−t/2 +

∞∑
j≥2

( 1
j
)t/2 = O(2−t/2).

We conclude that the largest singular value of A is at most
O(2−t/2), and thus ρ(u, v) can be upper bounded by δ/2 +

O(2−t/2) = 1
2
‖Vu −Vv‖+O(2−t/2), as claimed.

3. STRONGER RELAXATIONS
In this section, we consider stronger SDP relaxations

for Unique Games and for Sparsest Cut. A system-
atic way to obtain stronger relaxations is provided by SDP
hierarchies. We choose to state our results in terms of
Lasserre’s SDP hierarchy [16, 17]. The results in this
section apply only to a special case of Unique Games,
called ΓMAX2LIN. We say a Unique Games instance
U = (G(V,E), [k], {πuv}(u,v)∈E) has ΓMAX2LIN form, if
the label set [k] can be identified with the group Zk in
such a way that every constraint permutation πuv satisfies
πuv(i+s) = πuv(i)+s ∈ Zk for all s, i ∈ Zk. In other words,
πuv encodes a constraint of the form xu − xv = cuv ∈ Zk.

The ΓMAX2LIN property implies that we can find an opti-
mal SDP solution {ui}i∈[k] for U that is shift-invariant, i.e.,
for all s ∈ Zk we have 〈ui+s,vj+s〉 = 〈ui,vj〉. In particular,
every vector ui has unit norm.

Alternative Embedding for ΓMAX2LIN.
The following lemma can be seen as alternative to

Lemma 2.2. We emphasize that the lemma only holds for
ΓMAX2LIN instances and shift-invariant SDP solutions.

Lemma 3.1. Let Λopt be a labeling for U with val(Λopt) =
1− ε. Then the set of vectors {Vu}u∈V with Vu = uΛopt(u)

has the following two properties:

1. ρ(u, v) ≤ 1
2
‖Vu −Vv‖2 for every pair u, v of vertices

2. 1
2
E(u,v)∈E ‖Vu −Vv‖2 ≤ η + 2ε

Together with Lemma 2.1, the above lemma implies that the
randomized rounding procedure R computes a labeling that
satisfies at least a 1 − O(ε/λ) fraction of the constraints of
U , whenever opt(U) ≥ 1− ε. In this sense, the above lemma
allows to prove the main result of this paper for the special
case of ΓMAX2LIN.

Proof. Item 1 holds, since, by shift invariance,

ρ(u, v) = 1
2
Ei∈[k]

∥∥ui − vσuv(i)

∥∥2
= 1

2

∥∥uΛopt(u) − vσuv(Λopt(u))

∥∥2

≤ 1
2

∥∥uΛopt(u) − vΛopt(v)

∥∥2
.

Here we could assume, again by shift invariance, that∥∥ui − vσuv(i)

∥∥2
= minj ‖ui − vj‖2 for all i.

It remains to verify Item 2. By shift invariance,

ηuv = 1
2
Ei∈[k]

∥∥ui − vπuv(i)

∥∥2
= 1

2

∥∥uΛopt(u) − vπuv(Λopt(u))

∥∥2
.

Hence, if Λopt satisfies the constraint on an edge (u, v) ∈
E, then 1

2
‖Vu −Vv‖2 = ηuv. On the other hand,

1
2
‖Vu −Vv‖2 ≤ 2 because every vector Vu has unit norm.

Finally, since a 1−ε fraction of the edges is satisfied by Λopt,

E(u,v)∈E
1

2
‖Vu −Vv‖2 ≤ (1− ε) ·E(u,v)∈E [ ηuv ] + ε · 2.

Stronger Relaxations for Sparsest Cut.
Let r be a positive integer. Denote by I the set of all sub-

sets of V that have cardinality at most r. For every subset
I ∈ I, we have a variable xI . We consider a strengthening
of the spectral relaxation for Sparsest Cut (Figure 2).

Minimize
E(u,v)∈E ‖zu − zv‖2

Eu,v∈V ‖zu − zv‖2
(9)

Subject to

∀ I, J ∈ I, ∀ I ′, J ′ ∈ I 〈xI ,xJ〉 = 〈xI′ ,xJ′〉 (10)

if I ∪ J = I ′ ∪ J ′

∀ u ∈ V, ∀ i ∈ [k] x{u} = zu (11)

‖x∅‖2 = 1 (12)

Figure 2: Stronger relaxation for Sparsest Cut.



The variables xI are intended to have values 0 or 1, where
1 is some fixed unit vector. If the intended cut is (S, S), we
would assign 1 to all variables x{u} = zu with u ∈ S. The
variables xI are relaxations of boolean variables xI . The
intended value of xI is the product of the variables xt, t ∈ I.

Let zr(G) denote the optimal value of the SDP in Figure 2.
We have

λ ≤ z1(G) ≤ . . . ≤ zn(G) = n2

|E| min
∅6=S⊂V

|E(S, S)|
|S||S|

.

It can also be seen that the relaxation z3(G) is at least as
strong as the relaxation for Sparsest Cut considered in
[2]. The relaxations zr(G) are inspired by Lasserre’s SDP
hierarchy [16, 17].

The proof of the following theorem is similar to the
proof of Theorem 2.4. The main difference is that we use
Lemma 3.1, instead of Lemma 2.2, in order to show that lo-
cal correlation implies global correlation. By strengthening
the SDP for Unique Games, the vectors Vu obtained from
Lemma 3.1 can be extended to a solution for the stronger
SDP for Sparsest Cut in Figure 2. This allows us to re-
place the parameter λ by the parameter zr(G) in the below
theorem.

Theorem 3.2. There is an algorithm that computes in
time (kn)O(r) a labeling Λ with

val(Λ) ≥ 1−O(ε/zr(G))

if opt(U) ≥ 1− ε and U has ΓMAX2LIN form.

The proof of the above theorem is deferred to Appendix A.1.

4. PARALLEL REPETITION FOR
EXPANDING UNIQUE GAMES

In this section, we consider bipartite unique
games, i.e., Unique Games instances U =
(G(V,W,E), [k], {πvw}(v,w)∈E) such that G(V,W,E) is
a bipartite graph with bipartition (V,W ). A bipartite
unique game can be seen as a 2-prover, 1-round proof
system [9]. The two parts V,W correspond to the two
provers. The edge set E corresponds to the set of questions
asked by the verifier to the two provers and πvw is the
accepting predicate for the question corresponding to the
edge (v, w).

In this section, we give an upper bound on the amortized
value ω(U) = supr opt(U⊗r)1/r of bipartite unique game
U in terms of the expansion of its constraint graph. Here
U⊗r denotes the game obtained by playing the game U for
r rounds in parallel. We follow an approach proposed by
Feige and Lovász [9]. Their approach is based on the SDP
in Figure 3, which is a relaxation for the value of a bipartite
unique game. Let σ(U) denote the value of this SDP relax-
ation. The following theorem is a consequence of the fact
σ(U⊗r) = σ(U)r.

Theorem 4.1 ([9]). For every bipartite unique game
U , ω(U) ≤ σ(U).

We observe that the SDP in Figure 1 cannot be much
stronger than the relaxation σ(U). The proof mostly uses
standard arguments. We defer it to Appendix A.2.

Lemma 4.2. If σ(U) = 1−η then the value of the SDP in
Figure 1 is at least 1− 2η.

Maximize E(v,w)∈EEi∈[k]

〈
vi,wπvw(i)

〉
(13)

Subject to

∀ v ∈ V, w ∈W, i, j ∈ [k] 〈vi,wj〉 ≥ 0(14)

∀ v ∈ V, v′ ∈ V
∑
i,i′ |〈vi,v

′
i′〉| ≤ k(15)

∀ w ∈W, w′ ∈W
∑
j,j′

∣∣〈wj ,w
′
j′〉
∣∣ ≤ k(16)

Figure 3: Feige-Lovasz SDP for Unique Games

Theorem 4.3. If U is 2-prover 1-round unique game on
alphabet [k] with value at most 1−ε, then the value U played
in parallel for r rounds is at most (1 − Ω(ε · λ/ log 1

ε
))r,

where G is the graph corresponding to the questions to the
two provers. In particular, the amortized value w(U) is at
most 1− Ω(ε · λ/ log 1

ε
).

Proof. Following the approach in [9], it is sufficient to
show σ(U) ≤ 1− Ω(ελ/ log 1

ε
). Suppose that σ(U) = 1− η.

Then by Lemma 4.2, the value of the SDP in Figure 1 is at
least 1 − 2η. By Theorem 2.4, it follows that opt(U) ≥ 1 −
O(η log λ

η
/λ). On the other hand, opt(U) ≤ 1−ε. Hence, ε =

O(η log λ
η
/λ) and therefore η = Ω(λε log 1

ε
), as claimed.

5. ON REDUCTIONS TO SPARSEST CUT
Let us return to the main motivation of this paper,

namely, the possibility of a reduction from Unique Games
to Sparsest Cut. As remarked in the Introduction, for
such a reduction to work, we need to assume, at the very
least, that the Unique Games problem is hard even when
the constraint graph has some expansion. The question is
how much (and exactly what kind of) expansion is required
to prove inapproximability of Sparsest Cut and whether
one can expect Unique Games to be hard with the required
expansion, in light of Theorem 1.1.

Let us focus on the size of balanced cuts (say ( 1
10
, 9

10
)-

balanced cuts) as a measure of expansion. As the algorithm
in Theorem 1.1 shows, when λ � η, the problem is easy.
In terms of balanced cuts, the algorithm shows that the
problem is easy when every balanced cut inG has size� √η.
Thus if we were to hypothesize that Unique Games are
hard with expansion, we could only hypothesize hardness
on instances where every balanced cut is of size at least ηt

for some t > 1
2
. Would such a hypothesis be enough to prove

inapproximability of Sparsest Cut? We do not know the
answer, though we can prove inapproximability of Sparsest
Cut under a somewhat stronger hypothesis (we omit the
proof; the reduction is same as in [15]):

Hypothesis 5.1. For some fixed t, 1
2
< t < 1, for every

η, δ > 0, there exists k = k(η, δ) such that for a Unique
Games instance U with k labels, it is NP-hard to distinguish
between:

• YES Case: opt(U) ≥ 1− η.

• NO Case: opt(U) ≤ δ and for any partition of V into

three sets A,B,C, such that |C| ≤ |V |
1000

and |A|, |B| ≥
|V |
10

, there are at least ηt fraction of the edges between
the sets A and B.

Theorem 5.2. If Hypothesis 5.1 is true, then for any
η > 0, it is NP-hard to distinguish whether a given graph



H has a balanced cut of size at most η, or every balanced
cut is of size at least ηt. In particular, the Balanced Sep-
arator problem, and therefore the Sparsest Cut problem,
is hard to approximate within any constant factor.
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APPENDIX
A. DEFERRED PROOFS

A.1 Stronger relaxations
Proof of Theorem 3.2. We consider a strengthening

of the Unique Games SDP that is obtained by adding con-
straints similar to the constraints (11), (11), and (12). Let
I0 be the set of all possible subsets of V × [k] that have
cardinality at most r. For every subset I ∈ I0, we introduce
a new variable yI to the SDP in Figure 1. We include the
following additional constraints.

∀ I, J ∈ I0, ∀ I ′, J ′ ∈ I0 〈yI ,yJ〉 = 〈yI′ ,yJ′〉 (17)

if I ∪ J = I ′ ∪ J ′

∀ u ∈ V, ∀ i ∈ [k] y(u,i) = 1√
k
ui (18)

‖y∅‖2 = 1 (19)

The resulting SDP is still a relaxation for Unique Games,
since all additional constraints are valid for the case that all
ui are either 0 or

√
k1 for some fixed unit vector 1. Since

U has ΓMAX2LIN form, we can find a shift-invariant opti-
mal vector solution {ui}u∈V,i∈[k] to the SDP. Note that an
(approximately) optimal solution to the SDP can be com-

puted in time (kn)O(r). Suppose the value of the solution



is 1 − η. Let Vu := uΛopt(u) for some labeling Λopt with
val(Λopt) ≥ 1− ε.

We claim that Eu,v∈V ‖Vu −Vv‖2 ≤
1

zr(G)
E(u,v)∈E ‖Vu −Vv‖2 . In order to show the claim it

is sufficient to show that the vectors zu := Vu can be
extended to a solution for the SDP in Figure 2, that is,
we need to exhibit vectors xI for I ∈ I that satisfy the
constraints (11) and (11). Note, the last constraint (12)
is not essential, since it can always be enforced by scaling
the solution by a suitable factor (this does not change
the objective value (9)). We can choose the vectors xI as

xI =
√
kyφ(I), where φ(I) = {(u,Λopt(u)) | u ∈ I} ∈ I0.

The claim, together with Lemma 3.1, implies

Eu,v∈V [ ρ(u, v) ] ≤ 1
2
Eu,v∈V ‖Vu −Vv‖2

≤ 1
2zr(G)

E(u,v)∈E ‖Vu −Vv‖2

≤ (η + 2ε)/zr(G).

By Lemma 2.1, the rounding procedure R from Section 2.2
allows us to compute a labeling Λ such that val(Λ) ≥ 1 −
6η−12Eu,v∈V [ ρ(u, v) ] ≥ 1−50ε/zr(G). Here it is important
to note that the rounding procedure R does not depend on
the vectors Vu. The existence of these vectors is enough to
conclude that the rounding procedure succeeds.

A.2 Parallel Repetition
Proof of Lemma 4.2. Let {ui}u∈V ∪W,i∈[k] be an op-

timal solution to the SDP in Figure 3. We have
E(v,w)∈EEi∈[k]

〈
vi,wπvw(i)

〉
= 1− η.

We first show how to obtain a set of vectors
{u′i}u∈V ∪W,i∈[k] that satisfies constraints (2) and (3) and
has objective value E(v,w)∈EEi∈[k]〈v′i,w′πvw(i)〉 = 1−η. Let

su = 1− 1
k

∑
i,j | 〈ui,uj〉 | ≥ 0. For every vertex u ∈ V and

label i ∈ [k], let fu,i ∈ R[k]×[k] be the vector defined by

fu,i(i, i) =
√
su, ∀ j, j′ 6= i. fu,i(j, j

′) = 0,

∀ j 6= i. fu,i(i, j) = 1√
2
| 〈ui,uj〉 |1/2,

∀ j 6= i. fu,i(j, i) = − 1√
2
〈ui,uj〉 /| 〈ui,uj〉 |1/2.

Note that 〈fu,i, fu,j〉 = −〈ui,uj〉 for i 6= j, and 〈fu,i, fu,i〉 =
su +

∑
j 6=i | 〈ui,uj〉 |. Now let {xu,i}u∈V,i∈[k] be a set of

vectors such that 〈xu,i,xu,j〉 = 〈fu,i, fu,j〉 but 〈xu,i,xv,j〉 =
0 for u 6= v. Let {u′i}u∈V,i∈[k] be the set of vectors with
u′i = ui ⊕ xu,i. The value of the objective function has
not changed, since 〈u′i,v′j〉 = 〈ui,vj〉 for distinct vertices
u and v. On the other hand, vectors 〈u′i,u′j〉 = 〈ui,uj〉 +

〈fu,i, fu,j〉 = 0 for i 6= j, and
∑k
i=1 ‖u

′
i‖

2
=
∑k
i=1 ‖ui‖

2 +

‖fu,i‖2 = k. Hence the vectors u′i satisfy the constraints (2)
and (3).

It remains to show how to obtain a set of vectors that satis-
fies the non-negativity constraint (4) and that has objective
value at least 1−2η. By the previous paragraph, we can as-
sume that the vectors ui already satisfy the constraints (2)
and (3). Now consider the set of vectors {ũi}u∈V ∪W,i∈[k]

with ũi = ‖ui‖u⊗2
i . The vectors ũi still satisfy the con-

straints (2) and (3). They also satisfy constraint (4), because
〈ũi, ṽj〉 = ‖ui‖ ‖vj‖ 〈ui,vj〉2 ≥ 0. We can use the same rea-
soning as in the proof of Claim 2.8 to show that the objective
value E(v,w)∈EEi∈[k]〈ṽi, w̃πvw(i)〉 ≥ 1−2η. Specifically, this

lower bound follows from the fact (Ei∈[k]〈vi,wπvw(i)〉)2 ≤
Ei∈[k]〈ṽi, w̃πvw(i)〉.

A.3 Integrality gap and UGC hardness
Proof of Theorem 2.5. (Sketch) In [15] it is shown

that for every η > 0 small enough and for every n large
enough, there is a Unique Games instance Uη on k =
Θ(log(n)) labels and a constraint graph with n vertices, such
that (1) opt(Uη) ≤ O(1/ logη n), and (2) there is an SDP so-
lution for Uη of value at least 1 − O(η). The instances Uη
constructed in [15] are regular. We normalize the weights
of the constraints such that the weighted degree of every
vertex is equal to 1. Now consider the instance U ′η obtained
by adding k additional constraints between every pair of
vertices. Every new constraint has weight η/k(n − 1). For
every vertex u, the new constraints contribute weight η to
the weighted degree of u. For every pair (u, v) of vertices,
we choose the permutations for the new constraints in such
a way that every assignment satisfies exactly one of the new
constraints between (u, v). For example, we can use the
k cyclic shifts as permutations. Notice that the SDP so-
lution for Uη still has value at least 1 − O(η) for our new
instance U ′η. Also, opt(U ′η) ≤ 1/ logη n + η/k = O(logη n).
On the other hand, the normalized eigenvalue gap λ of the
constraint graph of U ′η is Ω(η). This can be seen from the
variational characterization (7) of λ. The nominator is al-
ways at least an Ω(η) fraction of the denominator.

Proof of Theorem 2.6. (Sketch) We can use essen-
tially the same reduction as in the above proof of Theo-
rem 2.5. Let ε > 0 be a small enough constant. The UGC
asserts that there exists a k = k(ε) such that it is NP-hard
to distinguish between Unique Games instances of value at
least 1 − ε and instances of value less than ε. We show a
reduction from this problem to the problem of distinguish-
ing between Unique Games instances with value at least
1 − 2η and instances of value less than 2ε, under the addi-
tional promise of λ ≥ η/(1 + η). Let U be a Unique Games
instances on n vertices. By Lemma 1.5 in [5] we can assume
that every vertex in U has weighted degree 1. As before, we
obtain a new Unique Games instance U ′ by adding k new
constraints between every pair of vertices, each of weight
η/k(n − 1). We can choose the new constraints in such a
way that only a 1/k fraction of them can be satisfied simul-
taneously. Notice that U ′ has λ ≥ η/(1 + η). This follows
from the characterization (7), since a η/(1 + η) fraction of
the edges in U ′ form a complete graph. On the other hand,
the reduction does not change soundness and completeness
by too much. If U has value less than ε, then U ′ has value
less than 2ε. If U has value at least 1− ε, then U ′ has value
at least 1− 2η.


