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Abstract—We study the computational power of general
symmetric relaxations for combinatorial optimization problems,
both in the linear programming (LP) and semidefinite program-
ming (SDP) case. We show new connections to explicit LP and
SDP relaxations, like those obtained from standard hierarchies.

Concretely, for k < n/4, we show that k-rounds of sum-of-
squares / Lasserre relaxations of size k

(
n
k

)
achieve best-possible

approximation guarantees for Max CSPs among all symmetric
SDP relaxations of size at most

(
n
k

)
. This result gives the first

lower bounds for symmetric SDP relaxations of Max CSPs, and
indicates that the sum-of-squares method provides the “right”
SDP relaxation for this class of problems.

Moreover, for k < n/4, we show the existence of symmet-
ric LP relaxations of size O(n2k) for the traveling salesman
problem that achieve per instance best-possible approximation
guarantees among all symmetric LP relaxations of size roughly(

n
k

)
.

Keywords-semidefinite programs, extended formulations, lin-
ear programs, constraint satisfaction problems, travelling sales-
man problem.

I. Introduction
The best known (approximation) algorithms for a vast

range of combinatorial optimization problems are based on
(polynomial-size) symmetric LP or SDP relaxations. This
work studies the computational power of such relaxations
and compares it to the power of explicit relaxation, e.g.,
obtained from hierarchies [1]–[4]. The motivation for this
comparison is two fold: On the one hand, we can deduce
new lower bounds for general symmetric relaxations (from
known lower bounds for hierarchies). On the other hand,
our comparison identifies the best symmetric relaxations of
a certain size. These relaxations are therefore a promising
basis for new approximation results.

A groundbreaking work of Yannakakis [5] initiated the
study of general LP formulations and showed exponential
lower bounds on the size of symmetric LP formulations
for traveling salesman and maximum matching. This work
also provided a framework for proving lower bounds on
general LP formulations (based on the notion of nonnegative

rank of matrices). Recent breakthroughs [6], [7] extended
Yannakakis’s lower bounds to the non-symmetric case using
techniques from communication complexity.

There has been some progress to extend these lower bounds
on LP formulations to the approximation setting [8]–[10], but
so far only for clique1 and Max CSPs. In the SDP setting, no
lower bounds are known for explicit problems (neither exact
nor approximate). This work gives the first lower bounds for
general symmetric SDP relaxations.

The ultimate goal of this line of research is to identify the
“right” LP and SDP relaxations (not necessarily symmetric)
for classes of optimization problems. We conjecture that
Sherali–Adams and sum-of-squares relaxations of polynomial
size indeed achieve the best possible approximation guaran-
tees among all polynomial-size LP and SDP relaxations for
many problems. Some of our proof techniques are tailored
toward the symmetric case (especially the group-theoretic
arguments). However, our basic framework also works in the
non-symmetric case and could therefore form the basis of
a proof for the non-symmetric case, in the same way that
Yannakakis’s framework was instrumental in the lower bound
results for general LP formulations.

Symmetric SDP Relaxations for Max CSPs: Semidefi-
nite programming marries linear programming and spectral
methods. Prominent examples like max cut and sparsest cut
show that semidefinite relaxations can achieve approximation
guarantees that are not (known to be) achievable by linear
relaxations or spectral methods on their own [11], [12].

The Unique Games Conjecture [13] predicts that a
particularly simple SDP relaxation achieves best-possible
approximation guarantees for every Max CSP [14]. It’s an
outstanding open question whether more complicated SDP
relaxation can refute this conjecture (by providing better
approximations than the basic SDP relaxation). Indeed, recent
works show that polynomial-size SDP relaxations based on

1In the case of clique, the LP relaxations considered in the lower bounds
do not subsume all LP relaxations for clique that appear in the literature.



the sum-of-squares method / Lasserre hierarchy provide better
approximations on families of instances for which many other
methods fail [15].

Analogous to Yannakakis’s characterization of general LP
relaxations, there exists a characterization of general SDP
relaxations (in terms of the notion of positive-semidefinite
rank of matrices) [6], [16], but no explicit lower bounds
are known. We provide an alternative characterization in
terms of sums-of-squares of linear subspaces, inspired
by the viewpoint developed in previous work [10]. This
characterization allows us to compare the power of general
symmetric SDP relaxation and the power of low-degree sum-
of-squares relaxations [3], [4] for Max CSPs.

Theorem I.1. For every Max CSP, k < n/4, degree-k sum-of-
squares relaxations achieve the best-possible approximation
guarantees among all symmetric SDP relaxations of size at
most

(
n
k

)
.

(This result also holds if k is a function of n, up to
exponential-size relaxations.)

Moreover, we exhibit an augmented degree k sum-of-
squares relaxation that achieves the best approximation guar-
antees among all symmetric SDP relaxations on an instance-
by-instance basis. Specifically, we show the following:

Theorem I.2. For every Max CSP Max-Π, k < n/4, there
exists an augmented degree-k sum-of-squares relaxation of
size nk+10 that on every instance I of the Max-Π, achieves the
best-possible approximation guarantees among all symmetric
SDP relaxations of size at most

(
n
k

)
.

It is interesting that the guarantee of optimality holds on
every instance, and therefore would apply even when one
is interested in special classes of instances such as planar
instances.

Combined with known lower bounds for sum-of-squares
relaxations [17]–[19], this result implies the first explicit
lower bounds for general symmetric SDP relaxations of
natural optimization problems. (A recent work shows that
random 0/1 polytopes require exponential-size SDP relax-
ations [20], but these polytopes do not correspond to natural
combinatorial optimization problems.) A concrete implication
is that for every positive constant ε > 0, symmetric SDP
relaxation require exponential size to achieve approximation
ratio 7/8 + ε for Max 3-Sat.

Symmetric LP Relaxations for Traveling Salesman:
Recent years have seen a lot of progress on the approxima-
bility of constraint satisfaction problems (e.g., in the context
of the Unique Games Conjecture). It is a very interesting
question whether these results could lead to new insights
about other notorious combinatorial optimization problems,
e.g., traveling salesman.

Previous work showed that symmetric LP relaxations
for Max CSPs are exactly as powerful as Sherali–Adams
relaxations [10]. Here, we show an analogous result for

traveling salesman.

Theorem I.3. For every k ∈ �, k < n/4, there exists an
symmetric LP relaxation L for traveling salesman on n
sites with O(n2k) constraints that can be generated in time
O(n4k+3) such that the following holds – For every instance
I and every symmetric LP relaxation L′ of size at most

(
n
k

)
we have

L′(I) 6 L(I) 6 opt(I) ,

i.e., L is a better approximation to opt than L′.

Related Work: In an independent effort, Fawzi, Saunder-
son, and Parillo [21] show relate lower bounds for symmetric
semidefinite programs. The notion of symmetry used in [21]
is stronger than the one we use (see Section III-A for more
details), but many of our results are incomparable.

II. Preliminaries

Constraint Satisfaction Problem: Constraint Satisfaction
Problems (CSPs) are a broad class of discrete optimization
problems that include Max Cut and Max 3-Sat. The main
focus of this work is CSPs over a boolean domain; the same
ideas can be generalized to CSPs over general finite domains.

Fix some k ∈ �. A k-ary predicate is a mapping P :
{−1, 1}k → {0, 1}. For a given n ∈ � and a subset S ⊆ [n]
with |S | = k, we use the notation PS : {−1, 1}n → {0, 1} to
denote the mapping

PS (x1, x2, . . . , xn) = P(xS ) ,

where xS ∈ {−1, 1}k denotes the projection of x ∈ {−1, 1}n to
the coordinates in S .

Let Π be a collection of k-ary predicates. We will often
refer to such a collection as a k-ary CSP. An instance of I
of Max-Π consists of n boolean variables x1, x2, . . . , xn, m
predicates P1, P2, ..., Pm ∈ Π, and m subsets S 1, S 2, . . . , S m ⊆

[n]. The constraints of the CSP are naturally of the form
PS i

i (x) = 1. The associated optimization problem is to find
an assignment x ∈ {−1, 1}n that satisfies as many constraints
as possible, i.e. that maximizes

valI(x) =
1
m

m∑
i=1

PS i
i (x) .

Given a CSP instance I, we denote its optimal value by
optI = maxx∈{−1,1}n valI(x) Finally, we will use Max-Πn to
denote the set of Max-Π instances on n variables.

Positive Semi-definite Matrices: We will use the notation
S+

k to denote the cone of k×k symmetric, positive semidefinite
(PSD) matrices with real entries. We equip S+

k with the Frobe-
nius inner product 〈U,V〉 = Tr(UT V) =

∑k
i=1

∑k
j=1 Ui jVi j.

One may naturally identify S+
k with a subset of Rk(k+1)/2

so that the inner product of two PSD matrices is equal to
the inner product of the corresponding vectors. We will use
these two representations interchangeably when the context
is clear.



We will now define the notion of an “SDP relaxation” for a
CSP. Let Π be a k-ary CSP and let n ∈ �. An SDP relaxation
for Max-Πn consists of two objects: A linearization and a
spectrahedron. Fix a number R ∈ � called the size of the
relaxation.

Linearization: A linearization associates to each assignment
x ∈ {−1, 1}n an element x̃ ∈ S+

R and to each instance I a
vector Ĩ ∈ RR(R+1)/2 satisfying the property that valI(x) =

〈Ĩ, x̃〉.

Spectrahedron: A spectrahedron S is the intersection of the
PSD cone with an affine linear subspace, i.e.

S = {y ∈ RR(R+1)/2 | Ay = b, y ∈ S+
R} ,

where A is an R(R+1)
2 ×

R(R+1)
2 matrix and b ∈ RR(R+1)/2. To

be a valid relaxation, S must contain all the integral points,
i.e. {x̃ : x ∈ {−1, 1}n} ⊆ S.

The SDP thus associated with a Max-Πn instance I is
given by

maximize 〈Ĩ, y〉
subject to Ay = b

y ∈ S+
R .

It is worth noting that the spectrahedron is independent
of the instance I (note also that one has a possibly different
spectrahedron for every input size n). The instance itself only
enters the relaxation through the objective function.

Although we refer to R as the size of the SDP relax-
ation, note that it has R(R + 1)/2 variables and equality
constraints. Finally, we say that an SDP relaxation is a
(c, s)-approximation for Max-Πn if, for every instance I,
the following implication holds true:

opt(I) 6 s =⇒ max
y∈S
〈Ĩ, y〉 6 c.

Sum of Squares Hierarchy: We now briefly review the
Sum of squares (SoS) SDP hierarchy for binary CSPs; for
an in-depth discussion, one may consult the monograph [22].
For a detailed description of the present perspective, we refer
readers to [15].

A solution to the the d-round SoS hierarchy consists of
vectors vS ,α for all sets of variables S ⊆ [n] with |S | 6 d and
assignments α ∈ {−1, 1}S . The constraints are described as
follows. For every subset S such that |S | 6 d, there should
exist a probability distribution µS on {−1, 1}S . Furthermore,
these distributions should be consistent in the sense that for
any two subsets S and T with |S |, |T | 6 d, the marginal
distributions of µS and µT on S ∩T should be identical. One
then requires that for any subsets S ,T ⊆ [n] with |S ∪T | 6 d
and any assignments α ∈ {−1, 1}S , β ∈ {−1, 1}T , we have

〈vS ,α, vT,β〉 = �µS∪T {XS = α, XT = β} ,

where X denotes a random variable distributed according
to µS∪T and XS and XT denote the projections of X to the
coordinates in S and T , respectively.

Alternatively, one can think of the SoS SDP as optimizing
an objective function over “local expectation” functionals.
Consider a map Ẽ that sends n-variate polynomials of degree
at most d (over R) to real numbers. We say that Ẽ is a
level-d pseudoexpectation functional (d-p.e.f) if it satisfies
the following properties:

– Linearity. For every pair of n-variate real polynomials
P and Q with deg(P), deg(Q) 6 d, and every pair of
numbers a, b ∈ R, we have

Ẽ(aP + bQ) = aẼ(P) + bẼ(Q) .

– Positivity. For every polynomial P with deg(P) 6 d/2,
we have Ẽ(P2) > 0

– Normalization. Ẽ(1) = 1.
For CSPs over the boolean cube {−1, 1}n, we may assume

the following additional constraints on the functionals; this
is because x2

i = 1 for xi ∈ {−1, 1}.
– Folding. For every monomial xα =

∏n
i=1(xi)αi of

degree at most d, we have Ẽ[xα] = Ẽ[xα mod 2], where
xα mod 2 =

∏
i(xi)αi mod 2.

Consider now a k-ary CSP instance I. We may naturally
consider the functional valI : {−1, 1}n → [0, 1] as a
multilinear polynomial of degree at most k by expressing
it in the Fourier basis: valI =

∑
S⊆[n]:|S |6k aSχS , where

χS (x) =
∏n

i=1 xi. By abuse of notation, we can consider
valI also as a multilinear polynomial over Rn.

We can now express the degree-d SoS value of the the
instance I by

SoSd(I) = max
{
Ẽ [valI] : Ẽ is d-p.e.f

}
.

III. Symmetric SDPs

A. Symmetry

Let Sn denote the set of permutations on n objects. Clearly
Sn acts on Rn by permutation of the coordinates. We call a
subset S ⊆ Rn symmetric if it is invariant under the action
of Sn. In [5], an extended formulation of an n-dimensional
convex polytope P ⊆ Rn is a convex polytope Q ⊆ Rn+n′ such
that P is the projection of Q to the first n coordinates. Suppose
P is symmetric. One says that the extended formulation is
symmetric if, for every σ ∈ Sn, there is a σ′ ∈ Sn′ such that the
permutation (σ,σ′) ∈ Sn+n′ preserves Q, i.e. Q = (σ,σ′)Q.

A direct analog of this definition is unsuitable for SDPs.
Consider again the natural identification of S+

R with a subset
of RR(R+1)/2. If σ ∈ SR(R+1)/2 and Y ∈ RR(R+1)/2 is PSD, it is
not necessarily the case that σY is PSD. It is more natural to
define the action of SR on RR(R+1)/2 as that which permutes
the rows and columns simultaneously. Thus if σ ∈ SR and Y =

(Yi j) ∈ RR(R+1)/2, we define σ · Y = (Yσ(i)σ( j))i j ∈ R
R(R+1)/2. It

is manifestly clear that S+
R ⊆ R

R(R+1)/2 is invariant under this
action. If one thinks about an SDP as a vector program, this
corresponds naturally to permuting the underlying variables.
It leads to the following notion of symmetry.



Definition III.1. An SDP relaxation of size R for Max-Πn

is symmetric if, for any σ ∈ Sn, there is a σ̃ ∈ SR, such that
for every x ∈ {−1, 1}n,

σ̃(x) = σ̃ · x̃,

where x̃ is the linearization of x and σ̃(x) is the linearization
of σ(x).

Remark III.2. Fawzi et al. [21] use a more general notion
of symmetry wherein for any σ ∈ Sn there exists an invertible
matrix ρ(σ) such that σ̃(x) = ρ(σ)x̃ρ(σ)T . In our setup, the
matrices ρ(σ) are restricted to being permutation matrices.

B. Function families

We now present a necessary condition for there to exist
a good SDP relaxation for Max-Πn in terms of families
of functions on the discrete cube. This is analogous to the
characterization for LPs given in [10], and follows closely
the semidefinite generalization of Yannakakis’ factorization
theorem presented in [6]. In what follows, ‖ · ‖ denotes the
Euclidean norm.

Theorem III.3. Consider some boolean CSP Πn. Suppose
that for some c > s > 0, there exists an SDP relaxation of
size R that (c, s)-approximates Max-Πn. Then there exists
a family of functions f1, f2, . . . , fR : {−1, 1}n → RR, such
that for each instance I with opt(I) 6 s, there are numbers
{λi, j : 1 6 i, j 6 R} ⊆ R and η > 0 satisfying: For all
x ∈ {−1, 1}n,

c − valI(x) =

R∑
i=1

∥∥∥∥∥∥∥∥
R∑

j=1

λi, j f j(x)

∥∥∥∥∥∥∥∥
2

+ η .

Furthermore, if the SDP relaxation is symmetric, then the
family { fi : 1 6 i 6 R} is invariant under permutation of
inputs, i.e. for all σ ∈ SR,

{σ fi : 1 6 i 6 R} = { fi : 1 6 i 6 R} .

Proof:
Let S be the spectrahedron associated with an SDP

relaxation of size R that (c, s)-approximates Max-Πn and
write

S = {y | Ay = b, y ∈ S+
R} .

Suppose that opt(I) 6 s. Since the SDP relaxation (c, s)-
approximates Max-Πn, we have 〈Ĩ, y〉 6 c for all y ∈ S.

In particular, this implies that c − 〈Ĩ, y〉 > 0 is valid for
all y ∈ S. Therefore, by the strong separation theorem (and
the fact that the SDP cone is self-dual), there exists a PSD
matrix Λ ∈ S+

R, a vector β ∈ �R(R+1)/2 and a number η > 0
such that for all y ∈ S,

c − 〈Ĩ, y〉 = 〈Λ, y〉 + 〈β, Ay − b〉 + η .

Specializing to y = x̃ for x ∈ {−1, 1}n, we have

c − valI(x) = c − 〈Ĩ, x̃〉 = 〈Λ, x̃〉 + 〈β, Ax̃ − b〉 + η

As x̃ ∈ S for x ∈ {−1, 1}n (by the definition of a valid
relaxation), we will have Ax̃ − b = 0, which implies that

c − valI(x) = 〈Λ, x̃〉 + η ∀x ∈ {−1, 1}n .

Write Λ =
∑R

i=1 λiλ
T
i for a set of vectors {λi} ⊆ RR.

For each x ∈ {−1, 1}n, let x̃ = LxLT
x be a Cholesky

decomposition of x̃, and define the functions { fi} so that
f1(x), f2(x), . . . , fR(x) are the rows of Lx. In this case, we
have

c − valI(x)

=

〈∑
i

λiλ
T
i , x̃

〉
+ η

=

〈∑
i

λiλ
T
i ,

∑
i

fi(x) fi(x)T
〉

+ η

=

R∑
i=1

∥∥∥∥∥∥∥∥
R∑

j=1

λi, j f j(x)

∥∥∥∥∥∥∥∥
2

+ η .

Suppose now that the SDP relaxation is symmetric. By
definition, for each permutation σ ∈ Sn, there exists a
permutation σ̃ ∈ SR such that

σ̃(x) = σ̃ · x̃

for all x ∈ {−1, 1}n.
Note that fi(x) is the ith row of the Cholesky decomposition

of x̃. From the above condition, it is clear that the ith row
of the Cholesky decomposition of σ̃(x) is the σ̃(i)th row of
x̃. Hence we will have

fi(σ(x)) = fσ̃(i)(x)

for all x ∈ {−1, 1}n and therefore the function family { fi :
1 6 i 6 R} is invariant under the action of SR, as desired.

C. Instance optimal symmetric SDPs

We now present an augmented version of the SoS hierarchy
and show that the approximation it achieves on every Max-Πn

instance is at least as good as any symmetric SDP of roughly
the same size. Our starting point is a structural lemma on
symmetric families of functions.

Definition III.4. A function f : {−1, 1}n → R is a k-near-
junta if f (x1, x2, . . . , xn) depends on at most k variables and
the value

∑n
i=1 xi. In other words, there is a subset S ⊆ [n]

with |S | = k such that if x and x′ have
∑n

i=1 xi =
∑n

i=1 x′i and
differ only on coordinates outside S , then f (x) = f (x′).

The proof of the following lemma is very similar to an
analogous claim in the work of Yannakakis [5].

Lemma III.5 ( [10], Lemma 4.3). Let F be a finite family
of functions of the form f : {−1, 1}n → R such that |F | 6

(
n
k

)
for some k < n/4. If F is invariant under the action of Sn,
then each f ∈ F is a k-near-junta.



Recall that the d-round SoS hierarchy corresponds to a
normalized pseudo-expectation functional over low degree
polynomials. Specifically, the pseudoexpectation functional Ẽ
is a linear functional that maps polynomials of degree at most
d to R and satisfies linearity and positivity constraints. Note
that this functional can be represented by a table containing
the pseudo-expectations of every monomial of degree at most
d, and the positivity constraint is equivalent to the quadratic
form P 7→ ẼP2 being positive semidefinite.

In the augmented SoS hierarchy, we require a pseudo-
expectation functional on a slightly larger class of polyno-
mials than low-degree polynomials. Fix a positive integer d.
Consider the vector space of polynomials of the form

P =
∑

06i62n

Pi(x)

∑
j

x j

i

, (III.1)

where each Pi(x) is a polynomial of degree at most d. Note
that the dimension of this vector space is at most 2n times
the dimension of the vector space of degree d polynomials.

In the augmented SoS SDP we will maximize the objective
function over pseudo-expectation functionals on this vector
space of polynomials. Similar to SoS hierarchy, we require
the pseudo-expectation functional Ẽ to satisfy the following
properties:

– Linearity
Ẽ(P + Q) = ẼP + ẼQ for every polynomial P and Q of
the form III.1. This is slightly more subtle compared
to the usual SoS, since assigning an arbitrary table
of values of Ẽm(x)(

∑
i xi)k for every monomial m(x)

of degree at most d and k 6 n no longer guarantees
linearity, as they’re not linearly independent. However
we can specify a basis of the space spanned by these
polynomials and let the SDP output the pseudo-moments
of the basis.
Compared to SoS, the size of this SDP is at most 2n
times bigger, as the number of polynomials in the basis
is at most 2n times bigger.

– Positivity
We want that for P =

∑
06i6n Pi(x)(

∑
j x j)i, deg(Pi) 6

d/2, ẼP2 > 0. Once we specify the basis, this is
equivalent to the quadratic form being semidefinite.

– Normalization
Ẽ1 = 1

Finally as the CSP is over the boolean cube {−1, 1}n, the
following additional constraints on the functional arise from
the fact that x2

i = 1.
– Folding For every monomial xα =

∏
i(xi)αi of degree

6 d, we will have Ẽ[xα
(∑

i xi
) j] = Ẽ[xα mod 2

(∑
i xi

) j]
for all j ∈ {0, . . . , 2n} wherein xα mod 2 =

∏
i(xi)αi mod 2.

Now we prove that this augmented SoS is instance-wise
optimal. Recall that an SDP relaxation is said to give an
α-approximation on an instance I ∈ MaxCSP if the value of
the SDP relaxation is at most α · opt(I).

Theorem III.6. Given an instance I of Max-Πn, suppose
2d-rounds of the augmented SoS hierarchy do not give an
α-approximation, then no symmetric SDP of size

(
n
d

)
can

achieve an α-approximation on I.

Proof: We prove the result by contradiction. Sup-
pose there exists a symmetric SDP that achieves an α-
approximation on I. By Theorem III.3, there exists a family
of vector valued functions { fi} such that

α · opt(I) − valI(x) =
∑

i

∥∥∥∥∥∥∥∥
∑

j

λi, j f j(x))

∥∥∥∥∥∥∥∥
2

+ η , (III.2)

for some η > 0 and real numbers λi, j. Note that by
Lemma III.5, each fi is d near-junta.

Let f j,k be the k-th coordinate of f j, it is easy to see that
f j,k is also d near-junta. Therefore,

f j,k =

n−1∑
l=0

∑
t

xt

l

P j,k,l , (III.3)

for some polynomials P j,k,l with degree at most d. Here we
are also using the fact that

∑
t xt takes at most n + 1 different

values.
Let Ẽ denote the pseudo-expectation functional obtained

by solving the 2d-round augmented SoS hierarchy on the
instance I. Clearly, Ẽ can be evaluated on the LHS of
(III.2) since valI is a low-degree polynomial. By (III.3),
the pseudoexpectation can also be evaluated on the RHS of
(III.2).

On evaluating Ẽ on the RHS of (III.2),

Ẽ
∑

i

‖
∑

j

λi, j f j‖
2 + η

=
∑
i,k

Ẽ

∑
j

λi, j f j,k

2

+ η

=
∑
i,k

Ẽ

∑
j

λi, j,lP j,k,l(
∑

t

xt)l

2

+ η

>0

However, on the LHS we will have

Ẽ(α · opt(I) − valI) = α · opt(I) − SoS(I) < 0 ,

a contradiction.
Note that one can also modify the Sherali-Adam Hierarchy

in the same manner to obtain instance optimal LP for CSPs.
We remark that this augmented SoS SDP is not stronger

than the usual SoS SDP in terms of general approximation
guarantee (that is, the worst case approximation ratio over
all possible instances), as we will show in the next section.
However, it is possible that this SDP performs better than
SoS on some specific instances.



D. Sum of Squares SDPs
In this section we prove that the Sum of Squares SDP

achieves the best possible approximation amongst symmetric
SDPs of similar size (not per instance-wise). Specifically
we show that the approximation guarantee of SoS SDP
on instances with n variables is at least as good as the
approximation guarantee of any symmetric SDP of similar
size on 2n variables.

Lemma III.7. Suppose that the conditions of Theorem III.3
hold for N = 2n, then there exists a family of k-juntas {gi} on
n variables of size at most 2knk, such that for every instance
I on n variables, there exists λi, j, such that,

c′ − valI =
∑

i

‖(
∑

j

λi, jg j)‖2

Proof: Given a MaxCSP instance I, we construct
another instance I′ of size 2n by adding n extra dummy
variables, while keeping the constraints the same on first
n variables. There are no constraints amongst the dummy
variables. Since the conditions of Theorem III.3 hold, we
have

c′ − valI′ (y) =
∑

i

‖(
∑

j

λi, j f j(y))‖2

for every y ∈ {−1, 1}2n.
In particular, we have

c′ − valI′ (x,−x) =
∑

i

‖(
∑

j

λi, j f j(x,−x))‖2

Define g j(x) = f j(x,−x), since f j is k near-junta, g j is
k-junta.

It’s easy to see that valI′ (x,−x) = valI(x), hence we have

c′ − valI(x)
=c′ − valI′ (x,−x)

=
∑

i

‖(
∑

j

λi, j f j(x,−x))‖2

=
∑

i

‖(
∑

j

λi, jg j)‖2

Now we prove the main theorem of this section.

Theorem III.8. Given MaxCSP Π, suppose that 2k-rounds
SoS relaxation cannot achieve (c, s)-approximation on in-
stances with n variables, then no symmetric SDP of size

(
N
k

)
achieves (c, s)-approximation on instances with N variables,
with N = 2n.

Proof: We prove it by contradiction. Suppose there
exists an SDP relaxation that achieves (c, s)-approximation
on instances with N variables, by Lemma III.7, there exists
a family of k-juntas gi such that for every I on n variables,

c′ − valI(x) =
∑

i

‖(
∑

j

λi, jg j(x))‖2

In particular, the equation holds for the instance I0 where
SoS fails to achieve (c, s)-approximation.

Let Ẽ be the pseudo-expectation functional defined by the
SoS solution on I0, by linearity of Ẽ, we have

ẼP = Ẽc′ − ẼvalI
= c′ − SoS(I)
6 c − SoS(I)
< 0

However on the other hand, by positivity of Ẽ we have,

ẼP =
∑

i

Ẽ‖(
∑

j

λi, jg j)‖2 > 0 ,

a contradiction.

IV. Instance Optimal Symmetric LPs for TSP

In this section, we will present an instance-optimal linear
program for Travelling Salesman problem. We begin by
recalling the setup of lower bounds for general linear
programs. The setup is similar to that of semidefinite
programs for MaxCSP outlined in Section II.

An LP relaxation of size R for Travelling Salesman on n
sites consists of the following.

Linearization: A linearization that associates to each tour
σ ∈ Sn an element σ̃ ∈ Rm and to each instance I a vector
Ĩ ∈ Rm such that valI(σ) = 〈Ĩ, σ̃〉 for every instance I and
every tour σ ∈ Sn.

Polyhedron: A convex polytope P ⊆ Rm described by R
linear inequalities, such that σ̃ ∈ P for each tour σ ∈ Sn.

Given an instance I of Travelling Salesman, the LP
relaxation L outputs the value L(I) = miny∈P〈Ĩ, y〉. Finally,
the LP relaxation is said to be symmetric if for every
permutation π ∈ Sn of the sites, there exists a corresponding
symmetry π̃ of the polytope P such that π̃(σ) = π̃ · σ̃.

In this section we show that for every constant k, there ex-
ists a symmetric LP of size O(nk), such that on every instance
of the Travelling Salesman problem, its approximation ratio
α is no worse than that of every symmetric LP of size

(
n
k

)
.

Specifically, we will prove Theorem I.3 (restated here for
convenience).

Theorem IV.1. (Theorem I.3 restated) For every k ∈ �,
k < n/4, there exists an symmetric LP relaxation L for
traveling salesman on n sites with O(n2k) constraints that can
be generated in time O(n4k+3) such that the following holds
– For every instance I and every symmetric LP relaxation
L′ of size at most

(
n
k

)
we have

L′(I) 6 L(I) 6 opt(I) ,

i.e., L is a better approximation to opt than L′.

To prove this result, we will need the following tailored
version of Theorem 1 in [8] and Theorem 2.2 of [10]



Theorem IV.2. For every symmetric LP L for Travelling
Salesman of size s, there exists a corresponding family of s
functions F = { fi : Sn 7→ R>0} with the following properties:

– The family F is invariant under permutations of sites,
i.e., for every permutation π and f ∈ F we have f ◦π ∈
F .

– For every instance I of Travelling Salesman with n
vertices, we have

L(I) = largest c such that valI −c ∈ Cone(F ) ,

where Cone(F ) is the cone generated by the family of
functions F .

Remark IV.3. For any family of non-negative functions
F = { f : Sn → R>0}, there is a natural linear program L for
Travelling Salesman associated with it

Maximize c

Subject to valI −c ∈ Cone(F )

The optimum L(I) always satisfies L(I) 6 opt(I). This
follows from the fact that the function valI −L(I) by virtue
of being in the Cone(F ) is a non-negative function on tours.
Finally, as stated above, the linear program L is not tractable
since Cone(F ) ∈ Rn!.

In order to prove Theorem I.3, we will construct a
symmetric linear program L of size O(n2k) with an associated
family of functions F such that:

1) For every family of functions F ′ = { f : Sn 7→ R>0} that
is invariant under permutations of sites and |F ′| 6

(
n
k

)
,

Cone(F ′) ⊆ Cone(F )

2) The linear program L can be generated in time O(n4k+3).
By property 1 above, for any other symmetric linear

program L′ of size
(

n
k

)
, the corresponding family of functions

F ′ will satisfy Cone(F ′) ⊆ Cone(F ). From Theorem IV.2,
this implies that we will have L(I) > L′(I) for every
instance. Moreover, since L can be generated efficiently,
the above construction will suffice to prove Theorem I.3.

First, we begin by describing the family of O(n2k) non-
negative functions F .

Definition IV.4. Let S and T denote ordered tuples of at
most k vertices such that |S | = |T |. Let IS ,T,odd : Sn 7→ {0, 1}
be the indicator function such that IS ,T,odd(σ) = 1 if and
only if σ(S ) = T and σ is an odd permutation. Similarly let
IS ,T,even be the indicator function such that IS ,T,even(σ) = 1 if
and only if σ(S ) = T and σ is an even permutation.

Define F to be the family of all these indicator functions,
i.e.,

F = {IS ,T,odd, IS ,T,even|S ,T ⊂ [n], |S | = |T | 6 k}

Now we will show that the family of functions F satisfies
property 1. Formally, we will prove the following:

Lemma IV.5. If F ′ is a family of non-negative functions
that is invariant under permutation of vertices and satisfies
|F ′| 6

(
n
k

)
then

Cone(F ′) ⊆ Cone(F )

In order to prove Lemma IV.5, we will first show an
analogue to Lemma III.5. Roughly speaking, if a family of
functions on Sn is invariant under permutations, then each
function only depends on few locations of the tour, and
possibly the parity of the tour.

Claim IV.6. Suppose a family of
(

n
k

)
functions { fi : Sn 7→

R>0} is invariant under permutation of its inputs, then for
each fi, there exists a set of indices Ji such that fi only
depends on the positions of Ji and the parity of the input
permutation.

Proof: Let Orb( f ) denote the orbit of a function f under
permutation of its inputs. Therefore we have |Orb( fi)| 6

(
n
k

)
.

Hence for each fi the automorphism group that preserves
fi is large. Now we appeal to the following claim from the
work of Yannakakis [5],

Claim IV.7. ( [5], Claim 2) Let H be a group of permutations
whose index in Sn is at most

(
n
k

)
for some k < n/4. Then

there exists a set J of size at most k such that H contains
all even permutations that fix the elements of J.

By Claim IV.7, the automophism group Aut( fi) contains
all even permutations that fix a subset of coordinates Ji with
|Ji| 6 k. Therefore the function only depends on the positions
of the indices in J and the parity of the permutation.

Proof of Lemma IV.5: By Claim IV.6, each function
in { fi} only depends on the positions of at most k indices
and the parity of the permutation, therefore the function
can be written as non-negative combination of the indicator
functions in {gi}, which implies cone({ fi}) ⊆ cone({gi}). �

The natural linear program for Travelling Salesman
associated with the family of functions F is given by,

Maximize c

Subject to valI − c ∈ Cone(F ) (IV.1)

Note that the condition valI −c ∈ Cone(F ) translates in to
the following set of linear constraints on a set of variables
{λ f } f∈F ,

valI(σ) − c =
∑
f∈F

λ f f (σ) ∀σ ∈ Sn

λ f > 0 ∀ f ∈ F

The above linear program has O(n2k) variables and O(n2k)
inequalities as desired, but has n! equalities. Now, we will
show how to find a succinct representation of the linear
program with O(n2k) variables and O(n2k) constraints. To
this end, let us write valI(σ) as a sum of the indicator
functions of pairwise events. Define J(i,a,b) to be the indicator



function of the event that the i-th edge of the tour is (a, b).
That is

J(i,a,b) = 1[σ(i) = a ∧ σ(i + 1 mod n) = b]

Hence we have

valI(σ) =

n∑
i=1

∑
a,b

D(a, b)J(i,a,b) ,

where D(a, b) is the cost of traversing the edge (a, b).
Rewriting the linear program IV.1 in terms of these functions,
we have

maximize c

subject to
n∑

i=1

∑
a,b

D(a, b)J(i,a,b) − c −
∑
f∈F

λ f f = 0 (IV.2)

λ f > 0 (IV.3)

We will rewrite the above linear program in an alternate
basis, so as to reduce n! equations to n2k equations. To
achieve this, we begin by making the following observation:

Observation IV.8. The inner product 〈 f , f ′〉 between any
pair of functions f , f ′ ∈ F can be computed in time O(n3).

Proof: Consequence of the simple combinatorial struc-
ture of the functions in F . In particular, there are explicit
formulae for the inner products of the indicator functions.

Let V be the |F | × |F | matrix with entries indexed by
f , f ′ ∈ F , given by V f f ′ = 〈 f , f ′〉. By the observation, we
can compute the matrix V in time O(n4k+3). Given the matrix
V , for every vector Λ = (λ f ) f∈F we will have,∑

f∈F

λ f f = 0 ⇐⇒ 〈
∑
f∈F

λ f f ,
∑
f∈F

λ f f 〉 = 0

⇐⇒ ΛT VΛ = 0
⇐⇒ VΛ = 0

Note that while
∑

f∈F λ f f = 0 is a system of n! equations in
the variables λ f , VΛ = 0 is an equivalent system of O(n2k)
equations.

Note that the indicator functions Ji,a,b appearing in the
equalities IV.2 can also be written as,

J(i,a,b) = I(i,i+1),(a,b),odd + I(i,i+1),(a,b),even .

Further, we can write the constant function 1 as 1 = Iodd+Ieven

where Iodd, Ieven ∈ F .
Let w denote a vector indexed by the family F given by

w f =


D(a, b) − λ f if f = I(i,i+1 mod n),(a,b),odd

D(a, b) − λ f if f = I(i,i+1 mod n),(a,b),even

c − λ f if f ∈ {Iodd, Ieven}

−λ f otherwise

Note that each entry of w is a linear function of the variables
(λ f ) f∈F and c (the distances D(a, b) are constants depending
on the instance I). We can rewrite (IV.2) as,∑

f∈F

w f f = 0 ,

or equivalently,
Vw = 0

Therefore, we can rewrite the linear program L in the
following form with O(n2k) variables namely {λ f , w f } f∈F ∪{c}
and O(n2k) constraints.

maximize c

subject to Vw = 0

w f =


D(a, b) − λ f if f = I(i,i+1 mod n),(a,b),odd

D(a, b) − λ f if f = I(i,i+1 mod n),(a,b),even

c − λ f if f ∈ {Iodd, Ieven}

−λ f otherwise

λ f > 0 ∀ f ∈ F
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