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ABSTRACT
The spectral profile of a graph is a natural generalization of
the classical notion of its Rayleigh quotient. Roughly speak-
ing, given a graph G, for each 0 < δ < 1, the spectral profile
ΛG(δ) minimizes the Rayleigh quotient (from the variational
characterization) of the spectral gap of the Laplacian matrix
of G over vectors with support at most δ over a suitable
probability measure. Formally, the spectral profile ΛG of a
graph G is a function ΛG : [0, 1/2]→ R defined as:

ΛG(δ)
def
= min

x∈RV

d(supp(x))6δ

P
gij(xi − xj)2P

i dix
2
i

.

where gij is the weight of the edge (i, j) in the graph, di is
the degree of vertex i, and d(supp(x)) is the fraction of edges
incident on vertices within the support of vector x.

While the notion of the spectral profile has numerous
applications in Markov chain, it is also is closely tied to its
isoperimetric profile of a graph. Specifically, the spectral
profile is a relaxation for the problem of approximating edge
expansion of small sets in graphs.

In this work, we obtain an efficient algorithm that yields
a log(1/δ)-factor approximation for the value of ΛG(δ). By
virtue of its connection to edge-expansion, we also obtain an
algorithm for the problem of approximating edge expansion
of small linear sized sets in a graph. This problem was
recently shown to be intimately connected to the Unique
Games Conjecture in [18].

Finally, we extend the techniques to obtain approximation
algorithms with similar guarantees for restricted eigenvalue
problems on diagonally dominant matrices.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and
Problems
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1. INTRODUCTION
Motivated by the need for improvements over the elemen-

tary bounds on total variation mixing times of a Markov
chain using spectral gap and conductance, Lovász and Kan-
nan [15] introduced the notion of an average conductance,
which takes into account the gain from large expansion small
sets (of states of a Markov chain). By deriving bounds on
the stronger L2-mixing time, Morris and Peres [17] further
strengthened the above result, using the notion of evolv-
ing sets. A corresponding functional analog of the average
conductance was then derived in the form of the spectral
profile by Goel-Montegro-Tetali [14], building on and fur-
ther simplifying earlier works in the continuous setting of
heat kernels on manifolds [5, 10]. As explained in detail in
[16], besides providing tighter estimates on mixing times for
various walks (by avoiding the penalty of a slow start), the
approach to mixing time in L2 using the spectral profile fa-
cilitated easier derivation of estimates on mixing using other
functional approaches – notably the logarithmic Sobolev and
Nash inequalities.

Generalizing the standard Cheeger-type inequality relating
the spectral gap and conductance (or sparsest cut in the
context of a graph), [14] also showed a Cheeger-type inequal-
ity relating the spectral profile to the average conductance
(or isoperimetric profile). Since one is often interested in
knowing when small sets expand (as this is sufficient for
many applications of expanders), the question of computing
or approximating the spectral profile becomes relevant and
interesting – with the hope of obtaining a certificate for such
small-set expansion. In this work we consider a very natural
semidefinite relaxation of the profile and obtain a logarith-
mic factor approximation. A precise statement of our results
appears below.

Inspired by recent applications in optimization over sparse
subspaces, we consider a natural extension of the notion of
spectral profile to the class of diagonally dominant matrices.
Recall that a matrix (over the reals) is diagonally dominant
if in every row, the diagonal entry is larger or equal (in
absolute value) to the sum of the absolute values of the off-



diagonal entries. The Laplacian matrix of a graph (being
the diagonal matrix of degrees minus the adjacency matrix),
with a row and a corresponding column removed, is easily
seen to be a special case of such matrices. Our second main
contribution is in formulating the spectral profile problem
for the diagonally dominant matrices and providing a similar
logarithmic factor approximation. This turns out to be a
rather nontrivial extension of our first result for graphs. Once
again, the precise statement of our second main theorem is
provided below.

In the following we briefly mention some recent related
work. In the currently active topic of sparse principal compo-
nent analysis [11, 12, 13], a general problem is to decompose
a covariance matrix as a combination of projections on or-
thogonal “sparse subspaces”. A related problem to this turns
out to be to maximize a quadratic form over sparse vectors.
For this problem, d’Aspremont et al. [13] consider a semidef-
inite relaxation very similar to the one considered in our
work. We show the first approximation algorithm for this
problem. If the covariance matrix is diagonally dominant,
then we can find sparse vectors that are almost maximally
correlated with this covariance matrix (see Theorem 1.6 for
a more precise statement).

1.1 Results
Let G = (gij) be a weighted graph with vertex set V =
{1, . . . , n}. Let d = (d1, . . . , dn) be the degree vector of G,
that is, di :=

P
j gij . We assume that the weights of G are

scaled such that
P
i di = 1. Hence, we can think of d as a

probability measure on V and we denote d(S) :=
P
i∈S di

for a subset S ⊆ V . For a vector x ∈ RV , let supp(x) :=
{i ∈ V | xi 6= 0} denote its support. We define the spectral
profile of G as

ΛG(δ)
def
= min

x∈RV

d(supp(x))6δ

P
ij gij(xi − xj)

2P
i dix

2
i

. (1.1)

We consider a natural semidefinite programming relaxation
Λ̃G for the spectral profile of G (see §2.1, (2.3)). Our main
result is the following relation of the spectral profile and
its SDP relaxation. (The theorem follows by combining
Theorem 3.1 and Theorem 3.2 in Section 3.)

Theorem 1.1. For every graph G and all ε, δ > 0,

Λ̃G(δ) 6 ΛG (δ) 6 Λ̃G (δ/1+ε) ·O
`
log (1/δ) /ε3´ .

In the theorem above, we can think of ε as an absolute
constant, say ε = 0.01, and δ as tending to zero.

Standard arguments also show that the rounding can be
implemented efficiently, yielding approximation algorithms
for the spectral profile of graphs. In particular, given a graph
G and a parameter δ > 0, we can compute a vertex set of
volume O(δ) such that the corresponding principal submatrix
of LG has smallest eigenvalue λ 6 ΛG(δ)·O (log(1/δ)) . Given
such a submatrix, we can efficiently find a vertex set S of
volume O(δ) with conductance Φ(S) 6 O(

√
λ) [14, 8]. Recall

that the conductance Φ(S) of a vertex set S is the weight of
the edge leaving the set divided by the weight of all edges
incident to the set.

The combination of these results leads to following approx-
imation algorithm for Small-Set Expansion (as considered
in [18]).

Theorem 1.2. There exists a polynomial time algorithm
that given a graph G and a parameter δ > 0, finds a set
S ⊆ [n] with volume d(S) = O(δ) and conductance

Φ(S) 6 O
`
Λ̃(δ) log(1/δ)

´1/2
.

To the best of our knowledge, there are no previous ap-
proximation results for Small-Set Expansion mentioned
in the literature (at least for the regime where the optimal
conductance is small but constant).

We observe that the approximation algorithm for Sparsest
Cut based on Cheeger’s inequality [1, 2] implies quite easily
a somewhat worse approximation for Small-Set Expansion.
The rough idea is to apply this algorithm Sparsest Cut
recursively until the graph is partitioned into sets of volume
not much more than δ. We can then argue that one of these
sets has conductance O(log(1/δ)

√
ε) if the optimal conduc-

tance of a set of volume δ was ε. Theorem 1.2 improves this
approximation guarantee by a factor

p
log(1/δ).

We note that one can prove Theorem 1.2 also directly,
without going through the approximation for the spectral
profile. The idea is to combine the techniques of [6, 7] with
the techniques in this paper.

We also note that the approximations of Theorem 1.1 and
Theorem 1.2 are optimal (up to constant factors) with respect
to the relaxation we are using. The Gaussian noise graph
in Rn (Ornstein–Uhlenbeck operator) is an integrality gap
instance with matching parameters.

Finally, we remark that the approximation algorithms
for Small-Set Expansion and the spectral profile can be
implemented with quasi-linear running time if Λ̃(δ) is lower-
bounded by a constant. (We measure the instance size by
the number of edges in the graph.) In this case, we can

compute near-optimal solutions for the SDP relaxation Λ̃(δ)
in quasi-linear time using the framework of Arora and Kale
[3] (also [19]).

Diagonally Dominant Matrices.
Let A = (aij) ∈ Rn×n be a symmetric diagonally domi-

nant1 matrix. Let µ be some probability measure on the
coordinate set [n]. Let RA(x) =

P
ij aijxixj/

P
i µix

2
i be the

Rayleigh quotient of A at x. We define the spectral profile
of A as ΛA(δ) = minx∈Rn,µ(supp(x))6δ RA(x). We consider a

natural semidefinite relaxation Λ̃A(δ) of the spectral profile.
We can generalize Theorem 1.1 in the following way. (The
theorem follows by combining Theorem 4.1 and Theorem 4.3
in Section 4.)

Theorem 1.3. There exists an absolute constant c > 0
such that for every matrix A as above and all δ > 0,

Λ̃A(δ) 6 ΛA(δ) 6 Λ̃A (cδ) ·O
`

log(1/δ)
´
.

The rounding that achieves the above bounds is quite
different from our construction for Theorem 1.1.

A relatively straight-forward modification of the construc-
tion for Theorem 1.1 achieves almost the above bound, but
with an additional additive error of Λ̃A(cδ) log(1/Λ̃A(cδ)). We
present the significantly simpler analysis of this slightly sub-
optimal construction in Section 4.2.

Again the rounding can be implemented efficiently.

1diagonally dominant means aii >
P
j 6=i|aij | for all i ∈ [n]



Theorem 1.4. There exists a polynomial time algorithm
that given a matrix A as above and a parameter δ > 0, finds
an O(δ)-sparse vector x such that

RA(x) 6 Λ̃A (cδ) ·O
`

log(1/δ)
´
.

Trevisan [20] showed that Cheeger’s inequality also applies
in this setting.

Theorem 1.5. There exists a polynomial time algorithm
that given a matrix A as above and a parameter δ > 0, finds
an O(δ)-sparse vector x ∈ {−1, 0, 1}n such that

RA(x) 6 O
“

Λ̃A (cδ) · log(1/δ)
”1/2

.

As before, the framework of Arora and Kale [3] allows us to
implement these approximation algorithms in quasi-linear if
Λ̃A(cδ) is bounded from below by a constant.

D’Aspremont et al. [13] consider the problem of maxi-
mizing RA(x) over sparse vectors x. If the measure µ is
proportional to the diagonal of A (which is a natural assump-
tion), this problem reduces to the problem of computing the
spectral profile of the matrix A′ = 2 diag(A)−A. (In words,
A′ has the same diagonal as A, but all off-diagonal entries
are negated.) Notice that A′ is diagonally dominant if and
only if A is so. Hence, we can apply Theorem 1.4 to A′. In
this way, we get the following approximation algorithm for
the problem of maximizing RA(x) over sparse vectors x.

Theorem 1.6. Let A be a matrix as above and let δ > 0.
Suppose the measure µ is proportional to the diagonal of
A. If there exists a δ-sparse vector x such that RA(x) >
(2 − η) TrA, then we can find in polynomial time a O(δ)-
sparse vector y such that

RA(y) >
`
2−O

`
η · log(1/δ)

´´
TrA .

(In our normalization, 2 is the maximum possible value
that RA(x) can achieve.)

1.2 Proof Overview and Techniques

SDP Relaxation of sparsity constraints.
Let G be a graph on vertex set {1, . . . , n}. For the sake of

simplicity, let us assume that G is unweighted and regular.
Our goal is to find a vector x with about δn non-zero coordi-
nates that minimizes the following Rayleigh quotient (from
the variational characterization of the spectral gap)

RG(x)
def
=

P
i∼j(xi − xj)

2P
i x

2
i

.

We note that without loss of generality, it is enough to
consider non-negative vectors (the Rayleigh quotient can
only decrease if we replace every coordinate by its absolute
value). Ignoring the sparsity constraint, the minimization
of RG(x) is equivalent to a semidefinite program, where we
minimize the function

P
i∼j‖vi − vj‖

2 over all collections of

vectors {vi} such that
P
i‖vi‖

2 = 1. The challenge is to deal
with the sparsity constraint. Since every δ-sparse vector x
satisfies ‖x‖21 6 δn‖x‖22, we can relax the sparsity constraint
to ‖

P
i vi‖

2 6 δn
P
i‖vi‖

2 in the SDP. In addition to this
constraint, we also include non-negativity constraints for the
inner products, 〈vi, vj〉 > 0 for all i, j ∈ [n]. We note that
unlike for other SDP relaxations (e.g. for Unique Games),

these non-negativity constraints are crucial. (Without these
constraints the SDP value for two disjoint cliques would be
0 for all δ > 0, even though the spectral profile is close to 1
for small enough δ > 0.)

Before describing the rounding, we mention a natural gen-
eralization: For a symmetric positive semidefinite matrix
A = (aij), let RA(x) = 〈x,Ax〉/〈x, x〉 be its Rayleigh quo-
tient. Our goal is to minimize this quotient over all δ-sparse
vectors x. The objective of our SDP relaxation for this prob-
lem is

P
ij aij〈vi, vj〉/

P
i‖vi‖

2. In contrast to the previous
case, we can no longer assume that the coordinates of the
minimizer x are non-negative. Hence, we cannot include non-
negativity constraints for the inner products. Instead, we
add the constraint

P
ij |〈vi, vj〉| 6 δn

P
i‖vi‖

2 . The resulting

SDP relaxation has been suggested in [13] (for the related
problem of maximizing RA(x) over sparse vectors x).

Two-phase rounding.
Our rounding proceeds in two phases: In the first phase,

we start with an optimal solution to the SDP relaxation
and produce a new SDP solution that satisfies a stronger
relaxation of the sparsity constraint. In this phase, our
objective value increases by at most a factor of order log(1/δ).
In the second phase, we extract a sparse vector from the SDP
solution that satisfies the stronger sparsity constraint. In
this phase, we only increase the objective value by a constant
factor.

The advantage of this two-phase rounding is that it allows
us to separate local and non-local arguments. In the first
phase, the transformation of the SDP solution is quite drastic
(we lose a log(1/δ) factor in the objective). However, the
transformation in this phase is completely local. In fact,
every vector gets mapped to a new vector in a way that is
oblivious to all other vectors in the SDP solution. On the
other hand, the rounding in the second phase is inherently
non-local, because it has to ensure that the resulting vector x
is sparse. In particular, the rounding for the ith coordinate of
x cannot be oblivious to all other coordinates. What allows
us to analyze the non-local rounding in this phase, is the
stronger sparsity constraint that we established in the first
phase.

The stronger sparsity constraint that is established in the
first phase has the form‚‚P

i|vi|
‚‚2

6 δn
X
i

‖vi‖2 , (1.2)

where |vi| is the vector vi with each coordinate replaced
by its absolute value. In Section 3.1, we show that vectors
satisfying this constraints can be rounded to a sparse vector
x such that RG(x) is not much larger than the SDP value of
the vectors v1, . . . , vn. The main ingredient is the following
lemma (see Lemma 2.5 and its consequences Lemma 3.6
and Lemma 4.7): Suppose x satisfies ‖x‖21 6 δn‖x‖22. Then,
we can choose a parameter t > 0 such that the vector y
defined as yi = soft-chopt(xi) is 3δ-sparse (say) and at the
same time ‖y‖22 > 1

3
‖x‖22 (a good fraction of the mass is

preserved). Here, soft-chopt is the soft-thresholding function,
defined as soft-chopt(x) = x− t if x > t, soft-chopt(x) = 0 if
|x| 6 t, and soft-chopt(x) = x+ t if x < −t.

This lemma allows us to show that in order to approximate
ΛG(δ), it is enough to find a vector x such that RG(x) is
small and ‖x‖21 6 δn‖x‖22. More concretely, it is easy to show
that RG(y) 6 3RG(x) where y is the 3δ-sparse vector ob-



tained from x by soft-thresholding as above. (This argument
works not only for Laplacian matrices but also for symmetric
diagonally dominant matrices, see Section 4.1.)

In the first phase of the rounding, our task is to transform
an arbitrary SDP solution to a solution that satisfies the
stronger sparsity constraint (1.2). For Laplacian matrices, we
use the same transformation as Barak et al. [4]. This trans-
formation has the property that it maps arbitrary vectors to
vectors with only non-negative coordinates and it preserves
distances in an approximate sense (see Section 3.2). For diag-
onally dominant matrices, we require that the transformation
is symmetric (an antipodal pair of vectors gets mapped to an
antipodal pair again). A straight forward adaptation of the
transformation for Laplacian matrices already gives a rela-
tively good approximation for diagonally dominant matrices
(see Section 4.2). Unfortunately, this construction incurs an
additional additive error term and therefore the final approx-
imation guarantee is not multiplicative. In Section 4.3, we
describe a transformation that is quite different from the
construction of Barak et al. [4] and avoids the additional
additive error even for diagonally dominant matrices. The
disadvantage of this construction is that the analysis is tech-
nically more involved (it relies on Gaussian noise sensitivity
bounds for soft threshold functions, see Section B).

2. PRELIMINARIES

2.1 Semidefinite Relaxation for the Spectral
Profile of Graphs

Let G = (gij) be a weighted graph with vertex set V =
{1, . . . , n}. Let d = (d1, . . . , dn) be the degree vector of G,
that is, di :=

P
j gij . We assume that the weights of G are

scaled such that
P
i di = 1. We denote d(S) :=

P
i∈S di

for a subset S ⊆ V . For a vector x ∈ RV , let supp(x) :=
{i ∈ V | xi 6= 0} denote its support. The spectral profile of G
is defined as

ΛG(δ)
def
= min

x∈RV

d(supp(x))6δ

P
ij gij(xi − xj)

2P
i dix

2
i

. (2.1)

Note that ΛG(δ) is monotonically decreasing in δ. It is
easy to show that ΛG(1/2) is up to constant factors equal
to the usual spectral gap of G (e.g., see [14]). The spectral
profile is characterized by the smallest eigenvalues of certain
restrictions of the Laplacian of G (Dirichlet eigenvalues).
Let L denote the normalized Laplacian of G (as defined e.g.
in [9]). For a set S ⊆ V , let LS be the S × S submatrix of
L. Then,

ΛG(δ) = min
S⊆V
d(S)6δ

λmin(LS) . (2.2)

We consider the following semidefinite programming relax-
ation for the spectral profile,

Λ̃G(δ)
def
= min

v1,...,vn∈Rn

P
ij gij‖vi − vj‖

2P
i di‖vi‖2

, (2.3)

where the minimum is over all vector configura-
tions v1, . . . , vn ∈ Rn that satisfy‚‚P

i divi
‚‚2

6 δ ·
P
i di ‖vi‖

2 , (2.4)

〈vi, vj〉 > 0 . (i, j ∈ V ) (2.5)

Let us show that Λ̃G(δ) is indeed a relaxation of the spectral
profile. Let v0 be any unit vector in Rn. For a vector x ∈ RV
with S = supp(x) and d(S) 6 δ, define vectors v1, . . . , vn ∈
Rn as vi = |xi| · v0. Let 1S ∈ {0, 1}V denote the indicator
function of the set S. By Cauchy–Schwarz,

‖
P
divi‖2 =

“X
i

di|xi|
”2

6
X
i

di1S(i) ·
X
i

dix
2
i 6 δ ·

X
i

di‖vi‖2 .

Furthermore, it is easy to verify that 〈vi, vj〉 > 0 for all
i, j ∈ V and that

P
ij gij‖vi − vj‖

2 6
P
ij gij(xi − xj)

2. It

follows that Λ̃G(δ) is indeed a relaxation for the spectral
profile.

Lemma 2.1. For every graph G and all δ > 0,

Λ̃G(δ) 6 ΛG(δ) .

2.2 Semidefinite Relaxation for the Spectral
Profile of Matrices

Let A = (aij) ∈ Rn×n be a symmetric positive semidefinite
matrix and let µ be a probability measure on {1, . . . , n}.

We define the spectral profile ΛA : [0, 1]→ R as

ΛA(δ)
def
= min

x∈Rn

µ(supp(x))6δ

P
ij aijxixjP
i µix

2
i

.

Let D ∈ Rn×n be the diagonal matrix with entries
µ1, . . . , µn. Note that

ΛA(δ) = min
S⊆[n]
µ(S)6δ

λmin(D
−1/2
S ASD

−1/2
S ) ,

where DS and AS denote the principal submatrices of D and
A corresponding to the coordinate set S.

We consider the following semidefinite programming relax-
ation for the spectral profile,

Λ̃A(δ)
def
= min

v1,...,vn∈Rn

P
ij aij〈vi, vj〉P
i µi‖vi‖2

, (2.6)

where the minimum is over all vector configura-
tions v1, . . . , vn ∈ Rn that satisfyX

ij

µiµj |〈vi, vj〉| 6 δ ·
X
i

µi ‖vi‖2 . (2.7)

This semidefinite relaxation has been introduced in [13] (for
the corresponding maximization problem).

Note that the constraint (2.7) is weaker than the previous
constraints (2.4) and (2.5). We have to use the weaker

constraint (2.7) for Λ̃A because we can no longer assume that
the optimal vector x ∈ Rn has only nonnegative coordinates.
As before, it is easy to verify that Λ̃A is a relaxation of ΛA.

Lemma 2.2. For every symmetric matrix A and all δ > 0,

Λ̃A(δ) 6 ΛA(δ) .

2.3 Gaussian Distributions
Let λn denote the usual Lebesgue measure on Rn.

Let N(0, σ2)n be the Gaussian measure on Rn with mean 0
and covariance σ2I (each coordinate is independent Gaussian
with mean 0 and standard deviation σ). Let φσ : Rn → R+



be the density of N(0, σ2)n with respect to the Lebesgue
measure,

φσ(x)
def
= 1

(σ
√

2π)n e
−‖x‖2/2σ2

.

Let Tu be the translation operator, i.e.,

Tuf(x)
def
= f(x− u) .

We will use the following bound on the (Hellinger) affinity
of translated Gaussians (e.g. in Barak et al. [4]).

Lemma 2.3 ([4]). Let u and v be two unit vectors in Rn.
Then Z p

Tuφσ · Tvφσ dλn = e−‖u−v‖
2/8σ2

.

Proof. Immediate from the identityp
Tuφσ · Tvφσ = e−‖u−v‖

2/8σ2
T 1

2 (u+v)φσ .

We equip the space {f : Rn → R} with the inner product
〈f, g〉 :=

R
fg dλn and define the corresponding norm ‖f‖ :=

〈f, f〉1/2. Consider the mapping

u 7→ fu := ‖u‖
p
Tūφσ .

Here, ū denotes the unit vector in the direction of u. In §3.2,
we will use this mapping to transform arbitrary SDP solutions
to non-negative SDP solutions. Notice that ‖fu‖ = ‖u‖ for
every vector u ∈ Rn. Furthermore, for unit vectors u, v ∈ Rn
that are close, say ‖u − v‖2 6 ε, we have ‖fu − fv‖2 6
O(ε/σ2). On the other hand, for unit vectors u, v ∈ Rn that

are far apart, say 〈u, v〉 6 1/2, we have 〈fu, fv〉 6 2−Ω(1/σ2).
In this sense, u 7→ fu is a distance preserving mapping from
the sphere in Rn to the non-negative orthant of the space
Rn → R.

The following technical fact shows that in order for a
mapping to preserve distances it is enough to preserve lengths
and distances of unit vectors (angles).

Fact 2.4. For any two vectors u, v ∈ Rn, we have

‖u− v‖2 = (‖u‖ − ‖v‖)2 + ‖u‖ ‖v‖ · ‖ū− v̄‖2 .

2.4 Nonnegative Random Variables
The following technical lemma shows the following intuitive

fact. If a non-negative random variable X satisfies EX2 >
(1+ε)k(EX)2, then a significant fraction of the 2-norm of X
has to be on values larger than τ = k EX, in the sense that
the 2-norm of the variable Y = max{X− τ, 0} is comparable
to the 2-norm of X.

Lemma 2.5. Let X be a non-negative random variable
with mean µ. For k > 1, let Y = max{X − kµ, 0}. Then,
for every ε > 0,

EY 2 > ε2 ·
`
EX2 − kµ2/(1− ε)

´
.

Proof. For u = ε2, let A be the event Y 2 > uX2 and let
B denote the complementary event. In other words, B is
the event (1− ε)X 6 kµ. Let 1A and 1B be 0/1-indicator
variables for these events. We can lower bound EY 2 as
follows

EY 2 > uE1AX2

= u
`
EX2 − E1BX2´

> u
`
EX2 − EX · kµ/(1− ε))

´
.

3. SPECTRAL PROFILE OF GRAPHS
We prove the following two theorems in this section (one

for each phase of our rounding). Putting them together yields
Theorem 1.1.

Let G = (gij) be a graph with vertex set V = {1, . . . , n}
and degrees d1, . . . , dn such that

P
i di = 1.

Theorem 3.1. For all δ > 0 and t > 1, there exist non-
negative functions f1, . . . , fn : Rn → R+ such thatP

ij gij‖fi − fj‖
2P

i di‖fi‖2
6 t · Λ̃G (δ)

and

‖
P
i difi‖

2 6 (δ + e−t)
P
i di‖fi‖

2 .

Theorem 3.2. Let f1, . . . , fn : Rn → R+ be non-negative
functions that satisfy‚‚P

i difi
‚‚2

6 δ
P
i di ‖fi‖

2 . (3.1)

Then for every ε > 0,

ΛG(δ/1−2ε) 6

P
ij gij‖fi − fj‖

2

ε3
P
i di‖fi‖2

.

3.1 From Non-negative SDP Solutions to
Sparse Vectors (Theorem 3.2)

Let f1, . . . , fn : Rn → R+ be non-negative functions that
satisfy the constraint (3.1). For δ′ := δ/(1− 2ε), let t : Rn →
R+ be the function

t
def
= 1

δ′

X
i
difi .

Define non-negative functions f ′1, . . . , f
′
n : Rn → R+ as

f ′i
def
= max{fi − t, 0} .

Let F ′ : Rn → Rn+ denote F ′ := (f ′1, . . . , f
′
n).

For the next lemma we crucially rely on the fact that the
functions f1, . . . , fn are non-negative (in fact it is the only
part of the proof where the non-negativity is used).

Lemma 3.3. For every x ∈ Rn,

d(supp(F ′(x))) 6 δ′ .

Proof. The lemma is a consequence of Markov’s inequal-
ity. Imagine that we choose i at random with probability di.
Then d(supp(F ′(x))) is the probability that fi(x) is larger
than t(x). On the other hand,

P
i difi(x) is the expected

value of fi(x) if i is chosen from this distribution. (Here it is
important that fi(x) is non-negative.) Thus,

t(x) · d(supp(F ′(x))) 6
X
i

difi(x) .

By the choice of t, it follows that d(supp(F ′(x))) 6 δ′.

Lemma 3.4.

ΛG(δ′) 6

P
ij gij‖f

′
i − f ′j‖2P

i di‖f ′i‖2
.

Proof. For every x ∈ Rn, the support of the vector F ′(x)
has weight at most δ′ (Lemma 3.3) and therefore,

ΛG(δ′) 6

P
ij gij(f

′
i(x)− f ′j(x))2P
i dif

′
i(x)2

.



Furthermore, by an averaging argument, there exists an
x ∈ Rn such thatP

ij gij(f
′
i(x)− f ′j(x))2P
i dif

′
i(x)2

6

P
ij gij‖f

′
i − f ′j‖2P

i di‖f ′i‖2
.

The combination of the previous two equations implies the
lemma.

Lemma 3.5.X
ij

gij‖f ′i − f ′j‖2 6
X
ij

gij‖fi − fj‖2 .

Proof. The truncation operation is contrac-
tive, i.e., for any two functions f and g, we have
‖max{f, 0} −max{g, 0}‖ 6 ‖f − g‖. This fact implies the
lemma.

Lemma 3.6. X
i

di‖f ′i‖2 > ε3
X
i

di‖fi‖2 .

Proof. By Lemma 2.5, for every x ∈ Rn,X
i
dif
′
i(x)2 > ε2

“X
i
difi(x)2 −

“X
i
difi(x)

”2
1

δ′(1−ε)

”
.

Hence,X
i
di‖f ′i‖2 > ε2 ·

“X
i
di‖fi‖2 −

‚‚‚X
i
difi

‚‚‚2
1

δ′(1−ε)

”
> ε2 ·

“
1− δ

δ′(1−ε)

”X
i
di‖fi‖2 (by (3.1))

= ε2 · ε
1−ε

X
i
di‖fi‖2 (choice of δ′) .

Putting together the previous three lemmas (Lemma 3.4,
Lemma 3.5 and Lemma 3.6) yields Theorem 3.2.

3.2 From Arbitrary SDP Solutions to Non-
negative SDP Solutions (Theorem 3.1)

Let v1, . . . , vn ∈ Rn be an optimal solution for the SDP
relaxation Λ̃G(δ) (see (2.3)–(2.5)). The vectors satisfy‚‚P

i divi
‚‚2

6 δ
P
i di‖vi‖

2 , (3.2)

〈vi, vj〉 > 0 . (i, j ∈ V ) (3.3)

We define non-negative functions f1, . . . , fn : Rn → R+ as

fi := ‖vi‖ ·
p
Tv̄iφσ .

Here, Tv̄iφσ is the density function of the Gaussian distribu-
tion with mean v̄i and standard deviation σ 6 1/2 in each
coordinate (see §2.3 for the formal definitions).

The following lemma shows that up to factor O(1/σ2) the
functions f1, . . . , fn have the same objective value as the
SDP solution v1, . . . , vn (which we assumed to be optimal).

Lemma 3.7.P
ij gij‖fi − fj‖

2P
i di‖fi‖2

6

P
ij gij‖vi − vj‖

2

4σ2
P
i di‖vi‖2

.

Proof. Since ‖vi‖ = ‖fi‖, it is enough to show that we
have ‖fi − fj‖2 6 ‖vi − vj‖2/4σ2 for all i, j ∈ V . From
Lemma 2.3 and the fact 1− x 6 e−x, it follows that

‖f̄i − f̄j‖2 = 2− 2e−‖v̄i−v̄j‖2/8σ2
6 ‖v̄i − v̄j‖2/4σ2

Together with Fact 2.4, we get as desired

‖fi − fj‖2 = (‖vi‖ − ‖vj‖)2 + ‖vi‖ ‖vj‖ · ‖f̄i − f̄j‖2

6 (‖vi‖ − ‖vj‖)2 + ‖vi‖ ‖vj‖ · ‖v̄i − v̄j‖2/4σ2

6 ‖vi − vj‖2/4σ2.

The last inequality uses the assumption σ 6 1/2 and again
Fact 2.4.

In the next lemma, we crucially use that the vectors
v1, . . . , vn satisfy the constraints (3.2) and (3.3). In fact,
it is the only part of the proof where these constraints are
important.

Lemma 3.8.‚‚P
i difi

‚‚2
6 (e−1/4σ2

+ δ)
X
i

di ‖vi‖2 .

Proof. Using Lemma 2.3 and the fact ecx 6 1 − (1 −
ec)x for x ∈ [0, 1], we can bound the inner products of the
normalized functions by

〈f̄i, f̄j〉 = e−(1−〈v̄i,v̄j〉)/4σ2

6 1− (1− e−1/4σ2
)(1− 〈v̄i, v̄j〉) 6 e−1/4σ2

+ 〈v̄i, v̄j〉.

(Both inequalities above use the non-negativity of 〈vi, vj〉.)
This bound allows us to estimate the length of

P
i difi,‚‚P

i difi
‚‚2

6
X
ij

didj‖vi‖ ‖vj‖
`
e−1/4σ2

+ 〈v̄i, v̄j〉
´

= e−1/4σ2`P
i di‖vi‖

´2
+
‚‚P

i divi
‚‚2
.

By Jensen’s inequality, the first term contributes not more

than e−1/4σ2 P
i di‖vi‖

2. From (3.2) it follows that the sec-
ond term is at most δ

P
i di‖vi‖

2. The lemma follows.

Putting together the previous two lemmas (Lemma 3.7
and Lemma 3.8) yields Theorem 3.1 (for t = 1/4σ2).

4. SPECTRAL PROFILE OF DIAGO-
NALLY DOMINANT MATRICES

We will prove Theorem 1.3 in this section. The proof has
the same outline as the proof of Theorem 1.1 in the previous
section (§3). The main difference is in the transformation
that is used to map an optimal SDP solution to a collection
of functions that satisfies a stronger relaxation of the sparsity
constraint.

Let A ∈ Rn×n be a symmetric diagonally dominant matrix
and let µ = (µ1, . . . , µn) be a probability measure on [n]
(natural choices for µ are uniform, µi = 1/n, or proportional
to the diagonal of the matrix, µi = aii/TrA).

In §4.1, we prove the following analog of Theorem 3.2.

Theorem 4.1. Let f1, . . . , fn : Rn → R be functions that
satisfy X

ij

µiµj〈|fi|, |fj |〉 6 δ
X
i

µi‖fi‖2 . (4.1)

Here, |f | is the function x 7→ |f(x)|. Then for every ε > 0,

ΛA(δ/1−2ε) 6

P
ij aij〈fi, fj〉

ε3
P
i µi‖fi‖2

.



In §4.2, we prove an analog of Theorem 3.1. However,
in addition to a multiplicative error there is also an addi-
tive error. (Furthermore, we can control this additive error
only when µ is proportional to the diagonal of A.) The
construction is a relatively straight-forward modification of
the construction we used for Laplacian matrices.

Theorem 4.2. Suppose that µ is proportional to the di-
agonal of A. For all δ > 0 and t > 1, there exist functions
f1, . . . , fn : Rn → R such thatX

ij

µiµj〈|fi|, |fj |〉 6 (δ +O(2−t))
X
i

µi‖fi‖2

and P
ij aij〈fi, fj〉P
i µi‖fi‖2

6 O(t) · Λ̃A (δ) + 2−t
X
i

aii .

In §4.3, we prove an analog of Theorem 3.1 that avoids
the additive error of the previous theorem. The construction
here is quite different from the previous constructions. Our
analysis of the construction is unfortunately somewhat more
involved.

Theorem 4.3. For all δ > 0 and t > 1, there exist func-
tions f1, . . . , fn : Rn → R such thatX

ij

µiµj〈|fi|, |fj |〉 6 O(δ + 2−t)
X
i

µi‖fi‖2

and P
ij aij〈fi, fj〉P
i µi‖fi‖2

6 O(t) · Λ̃A (δ) .

Putting together Theorem 4.1 and Theorem 4.3 yields an
approximation for the spectral profile of diagonally dominant
matrices (Theorem 1.3).

4.1 From SDP Solutions with Small 1-Norms
to Sparse Vectors (Theorem 4.1)

Let f1, . . . , fn : Rn → R be functions that satisfy (4.1).
For δ′ := δ/(1− 2ε), let t : Rn → R+ be the function

t
def
= 1

δ′

X
i

µi|fi| .

Define non-negative functions f ′1, . . . , f
′
n : Rn → R as

f ′i(x)
def
=

8><>:
fi(x)− t(x) if fi(x) > t(x) ,

0 if −t(x) 6 fi(x) 6 t(x) ,

fi(x) + t(x) if fi(x) < −t(x) .

This method of “sparsifying” the functions is known as soft
thresholding [21]. Let soft-chopτ : R → R denote the soft-
thresholding function soft-chopτ (a) = sign(a)·max{|a|−τ, 0}.
Note that f ′i(x) = soft-chopt(x) fi(x). Let F ′ : Rn → Rn+
denote F ′ := (f ′1, . . . , f

′
n).

The proof of the next lemma is the same as the proof of
Lemma 3.3 (essentially Markov’s inequality).

Lemma 4.4. For every x ∈ Rn,

µ(supp(F ′(x))) 6 δ′ .

The proof of the next lemma is the same as the proof of
Lemma 3.4. (An averaging argument shows that we can find
x ∈ Rn such that the Rayleigh quotient of A at the vector
F ′(x) is at most the right-hand side of the equation below.
By the previous lemma, this vector F ′(x) is δ′-sparse.)

Lemma 4.5.

ΛA(δ′) 6

P
ij aij〈f

′
i , f
′
j〉P

i µi‖f ′i‖2
.

The next lemma corresponds to Lemma 3.5. In the proof
of Lemma 3.5 we used properties specific to Laplacians. In
the next lemma, we show that the same bound holds also for
diagonally dominant matrices.

Lemma 4.6.X
ij

aij〈f ′i , f ′j〉 6
X
ij

aij〈fi, fj〉 .

Proof. Since soft-chopτ is contractive (has Lipschitz con-
stant at most 1) and symmetric (an odd function), i.e.,
σ · soft-chopτ (b) = soft-chopτ (σ · b), we have for all a, b ∈ R,
σ ∈ {±1}, and τ > 0,

|soft-chopτ (a)− σ · soft-chopτ (b)| 6 |a− σ · b| .

In particular, ‖f ′i−σf ′j‖ 6 ‖fi−σfj‖ for all i, j ∈ [n] and σ ∈
{±1}. By Lemma A.1, there exist matrices B ∈ Rn×n+ and

C ∈ {1,−1}n×n such that
P
ij aijxixj =

P
ij bij(xi−cijxj)

2

for all x ∈ Rn. We concludeX
ij

aij〈fi, fj〉 =
X
ij

bij‖fi − cijfj‖2

6
X
ij

bij‖f ′i − cijf ′j‖2 =
X
ij

aij〈f ′i , f ′j〉 .

The next lemma has the same proof as Lemma 3.6.

Lemma 4.7.X
i

µi‖f ′i‖2 > ε3
X
i

µi‖fi‖2 .

Putting together the previous three lemmas (Lemma 4.5,
Lemma 4.6, and Lemma 4.7) yields Theorem 4.1.

4.2 From Arbitrary SDP Solutions to SDP So-
lutions with Small 1-Norms (Theorem 4.2)

Let v1, . . . , vn ∈ Rn be an optimal solution to the semidef-
inite relaxation Λ̃A(δ). The vectors satisfyX

ij

µiµj |〈vi, vj〉| 6 δ
X
i

µi‖vi‖2 . (4.2)

For a parameter σ > 0 (which will be determined later), we
define functions f1, . . . , fn : Rn → R as

fi := 1√
2
‖vi‖ ·

p
Tv̄iφσ − 1√

2
‖vi‖ ·

p
T−v̄iφσ . (4.3)

(Recall the notation from §2.3.) Using Lemma 2.3, we com-
pute the inner products of the functions f1, . . . , fn as

〈fi, fj〉 = ‖vi‖ ‖vj‖
“
e−‖v̄i−v̄j‖2/8σ2

− e−‖v̄i+v̄j‖2/8σ2
”
. (4.4)

For the rest of the proof, we will use the following bounds
on these inner products.

Lemma 4.8. For all i, j ∈ {1, . . . , n},



1. ‖fi‖2 =
`
1− e−1/2σ2´

‖vi‖2,

2. 〈|f̄i|, |f̄i|〉 6 |〈v̄i, v̄j〉|+ 2e−1/4σ2
,

3. ‖f̄i − f̄j‖2 6 1/4σ2‖v̄i − v̄j‖2 + 2e−1/4σ2
,

4. ‖f̄i + f̄j‖2 6 1/4σ2‖v̄i + v̄j‖2 + 2e−1/4σ2
,

Proof. Item 1 is immediate from (4.4). To demonstrate
Item 2, we bound the inner product of |f̄i| and |f̄j | analog
to (4.4) by

〈|f̄i|, |f̄j |〉 6 e−(1−〈v̄i,v̄j〉)/4σ2
+ e−(1+〈v̄i,v̄j〉)/4σ2

.

By symmetry, we may assume 〈v̄i, v̄j〉 > 0. In this case, the

second term on the right hand side is at most e−1/4σ2
, and

the first term on the right hand side is at most

1− (1− e−1/4σ2
)(1− 〈v̄i, v̄j〉/4σ2) 6 e−1/4σ2

+ 〈v̄i, v̄j〉/4σ2.

Here, we used the bound ecx 6 1− (1− ec)x for x ∈ [0, 1] as
in the proof of Lemma 3.8. Item 2 follows by combining the
bounds on the two terms. Towards proving Item 3, we bound
the inner product of f̄i and f̄j from below. If 〈v̄i, v̄j〉 > 0,
then ‖v̄i + v̄j‖2 > 2 and thus we get from (4.4),

〈f̄i, f̄j〉 > 1− ‖v̄i − v̄j‖2/8σ2 − e−1/4σ2
,

using the approximation e−x > 1− x for x ∈ R. Otherwise,
if 〈v̄i, v̄j〉 < 0, we get from (4.4),

〈f̄i, f̄j〉 > (1− e−1/4σ2
)(1 + 〈v̄i, v̄j〉)− 1 > 〈v̄i, v̄j〉− e−1/4σ2

,

using −ecx > (1− ec)x− 1 for x ∈ [0, 1]. In both cases, our
bound on the inner product 〈f̄i, f̄j〉 implies Item 3. To prove
Item 4, we note that the transformation (4.3) is symmetric,
i.e., if v is mapped to f , then −v is mapped to −f . Hence,
Item 3 implies Item 4.

The next lemma corresponds to Lemma 3.7. However, in
our current construction, an additive error term appears (in
contrast to the purely multiplicative error in Lemma 3.7).
We can control the error by decreasing the standard deviation
σ of the Gaussians in our construction.

Lemma 4.9.P
ij aij〈fi, fj〉P
i µi‖fi‖2

6 O( 1
σ2 )

P
ij aij〈vi, vj〉P
i µi‖vi‖2

+ 2−Ω(σ−2)P
j ajj .

Proof. Using Fact 2.4 (similar to the proof of Lemma 3.7),
Item 3 and Item 4 of Lemma 4.8 imply for all i, j ∈ [n] and
σ ∈ {±1},

‖fi − σfj‖2 6 O
`

1
σ2

´
‖vi − vj‖2 + 2−Ω(σ−2)‖vi‖ ‖vj‖ .

Let B ∈ Rn×n+ and C ∈ {1,−1}n×n as in Lemma A.1. Then,X
ij

aij〈fi, fj〉 =
X
ij

bij‖fi − cijfj‖2

6 O
`

1
σ2

´X
ij

bij‖vi − cijvj‖2 + 2−Ω(σ−2)
X
ij

bij‖vi‖ ‖vj‖

6 O
`

1
σ2

´X
ij

aij〈vi, vj〉+ 2−Ω(σ−2)
X
i

aii‖vi‖2 .

In the last inequality, we used 2‖vi‖ ‖vj‖ 6 ‖vi‖2 + ‖vj‖2
and the observation that

P
j bij 6 aii. The lemma follows

because ‖fi‖2 = Θ(‖vi‖2) and µi = aii/
P
j ajj (one of the

assumptions of Theorem 4.2 was that µ is proportional to
the diagonal of A).

The next lemma corresponds to Lemma 3.8. In this section,
it is a straight-forward consequence of Item 2 of Lemma 4.8
and the fact that the vectors satisfy (4.2).

Lemma 4.10.X
ij

µiµj〈|fi|, |fj |〉 6 (δ + 2−Ω(1/σ2))
X
i

µi‖fi‖2 .

Proof. From Item 2 of Lemma 4.8, it follows that

〈|fi|, |fj |〉 6 |〈vi, vj〉|+ ‖vi‖ ‖vj‖e−1/4σ2
. Therefore,X

ij

µiµj〈|fi|, |fj |〉 6
X
ij

µiµj |〈vi, vj〉|+e−1/4σ2`P
i µi‖vi‖

´2
.

Since the vectors satisfy (4.2), the first term of the right-hand
side is at most δ

P
i µi‖vi‖

2. By convexity, the second term

contributes at most e−1/4σ2 P
i µi‖vi‖

2, as desired.

Theorem 4.2 follows from Lemma 4.9 and Lemma 4.10.

4.3 Better Construction for Diagonally Domi-
nant Matrices (Theorem 4.3)

Suppose v1, . . . , vn is an optimal solution for the SDP
relaxation Λ̃A(δ). Recall the soft-thresholding function
soft-chopt(x) = sign(x) max{|x| − t, 0}. For a parameter
t > 0, we define functions f1, . . . , fn as

fi(x) = ‖vi‖ · soft-chopt(〈v̄i, x〉)/‖soft-chopt‖γ .

Here, ‖·‖γ denotes the 2-norm with respect to the Gaussian
measure γ. We equip the space {f : Rn → R} with the
corresponding inner product 〈f, g〉γ =

R
f(x)g(x) dγn(x),

where γn denotes the n-dimensional Gaussian measure. With
these definitions, we can check that ‖fi‖γ = ‖vi‖ for all
i ∈ [n].

In the next section (§B), we show that the functions satisfy
the following properties.

Lemma 4.11. For all i, j ∈ {1, . . . , n},

1. 〈|f̄i|, |f̄j |〉 6 O(1)|〈v̄i, v̄j〉|+ 2−Ω(t2),

2. ‖f̄i − f̄j‖2 6 O(t2)‖v̄i − v̄j‖2

3. ‖f̄i + f̄j‖2 6 O(t2)‖v̄i + v̄j‖2

Proof of Theorem 4.3. In the previous section (§4.2)
we showed that the properties asserted by Lemma 4.11 are
enough to conclude as desiredP

ij aij〈fi, fj〉P
i µi‖fi‖2

6 O(t2)

P
ij aij〈vi, vj〉P
i µi‖vi‖2

,

andX
ij

µiµj〈|fi|, |fj |〉 6 O(δ + 2−Ω(1/σ2))
X
i

µi‖fi‖2 .
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APPENDIX
A. CHARACTERIZATION OF DIAGO-

NALLY DOMINANT MATRICES
The following lemma is easy to show, e.g., by induction on

the number of non-zero entries of the matrix A.

Lemma A.1. Let A = (aij) ∈ Rn×n be a symmetric
diagonally dominant matrix. Then, there exists a non-
negative matrix B = (bij) ∈ Rn×n+ and a sign matrix

C = (cij) ∈ {1,−1}n×n such that for every x ∈ Rn,

〈x,Ax〉 =
X
ij

bij(xi − cijxj)2 .

B. PROPERTIES OF TRUNCATED GAUS-
SIANS

In this section, we will prove Lemma 4.11. For brevity, we
write θt = soft-chopt for the soft-thresholding function. We
think of θt as a member of L2(R, γ), where γ is the standard
Gaussian measure on R. In §4.3, we implicitly considered
the following mapping T from Rn to L2(Rn, γn),

T (u) : g 7→ ‖u‖ · θt(〈g, ū〉)/‖θt‖ .

In the following, we will show that for any two unit vec-
tors u, v ∈ Rn,

〈|T (u)|, |T (v)|〉 6 |〈u, v〉|+ 2−Ω(t2) , (B.1)

‖T (u)− T (v)‖2 6 O(t2)‖u− v‖2 . (B.2)

Since T (−u) = −T (u), the bounds (B.1) and (B.2) directly
imply Lemma 4.11.

For ρ ∈ [−1, 1], let Uρ denote the operator on L2(R)

〈f, Uρf〉 =

Z
f(x)f(ρx+

p
1− ρ2y) dγ(x) dγ(y) .

For any two unit vectors u, v ∈ Rn with inner product
〈u, v〉 = ρ, the distribution of (〈g, ū〉, 〈g, v̄〉) for a random
Gaussian vector g ∈ Rn is the same as the distribution of
(x, ρx+

p
1− ρ2y) for two independent Gaussians x and y.

Hence, 〈T (u), T (v)〉 = 〈θt, Uρθt〉 and 〈|T (u)|, |T (v)|〉 =
〈|θt|, Uρ|θt|〉. The quantity 〈θt, Uρθt〉 is the Gaussian noise
sensitivity of the function θt. In the rest of this section, we
derive bounds on this sensitivity that imply the bounds (B.1)
and (B.2) and thereby Lemma 4.11.

B.1 Gaussian noise sensitivity bounds for soft
threshold functions

For x ∈ R, let (x)+ = max{x, 0}. Note that θt =

sign(x)(|x| − t)+. Recall that dγ(x) = (
√

2π)−1e−x
2/2 dx.

We need the following fact about moments of the exponen-
tial distribution.

Fact B.1. For k ∈ N and z > 1/t,Z z

u=0

ukte−tudu = k!
tk+1 ± e−tz ·Ok(tz)k .

Lemma B.2. ‖θt‖2 = Θ(e−t
2/2/t3) .

Proof. We have

‖θt‖2 = 2

Z
(x− t)2

+ dγ(x) = 2e−t
2/2

Z
u>0

u2e−tu dγ(u) .

The lemma follows from Fact B.1 and the fact that dγ(u) ≈
du/
√

2π for small enough u.

Lemma B.3. If |ρ| 6 1/2, then for α =
p

4/3

〈|θt|, Uρ|θt|〉 6 6‖θαt‖2 .



Proof. Define ϑt(x) = (x− t)+. Let τ =
p

1− ρ2. First,
we estimate 〈ϑt, Uρϑt〉,Z

(x− t)+(ρx+ τy − t)+ dγ(x, y)

6
Z

(x+ ρx+ τy − 2t)2
+ dγ(x, y) (pointwise)

=

Z
(
p

2(1 + ρ) z − 2t)2
+ dγ(z) (Gaussians are 2-stable)

= 2(1 + ρ)

Z “
z −

p
2/1+ρ t

”2

+
dγ(z)

= (1 + ρ)‖θt′‖2 (for t′ =
p

2/1+ρ t)

6 3/2 · ‖θαt‖2 (for α =
p

4/3 6 t′/t)

Let z = ρx+
p

1− ρ2y. Notice that

|θt(x)θt(z)| = ϑt(|x|)ϑt(|z|) =
P

σ,σ′∈{±1}
ϑt(σx)ϑt(σ

′z) .

It follows that 〈|θt|, Uρ|θt|〉 = 2〈ϑt, Uρϑt〉 + 2〈ϑt, U−ρϑt〉,
which implies the lemma using the previous bound
〈ϑt, U±ρϑt〉 6 3/2 · ‖θαt‖2.

As a direct consequence of previous two lemmas, we get
the following bound on 〈|θt|, Uρ|θt|〉.

Lemma B.4.

〈|θt|, Uρ|θt|〉 6 2|ρ|‖θt‖2 +O(e−t
2/6)‖θt‖2 .

Proof. Since Uρ is a Markov operator, 〈|θt|, Uρ|θt|〉 6
‖θt‖2. Hence the lemma is trivially true if |ρ| > 1/2. Other-
wise, if |ρ| 6 1/2, Lemma B.3 asserts 〈|θt|, Uρ|θt|〉 6 ‖θαt‖2 for

α =
p

4/3. By Lemma B.2, ‖θαt‖2 = ‖θt‖2 ·Θ(e−t
2/6).

Lemma B.5. If ρ = 1− ε, then

〈θt, (I − Uρ)θt〉 6 O(t2ε)‖θt‖2

Proof. Let τ =
p

1− ρ2 ≈
√

2ε and let f(x, y) = θt(x)−
θt(ρx+ τy). The inner product 〈θt, (I − Uρ)θt〉 is equal to

1
2

Z `
θt(x)− θt(ρx+ τy)

´2
dγ2(x, y) = 1

2

Z
f2 dγ2 .

The function f is invariant under the following isometries,

(x, y) 7→ (−x,−y) and (x, y) 7→ (ρx+ τy, τx− ρy).

Since the Gaussian measure is also invariant under these
isometries, it follows that the integrals of f2 over the sets
{(x, y) | x > t}, {(x, y) | x 6 −t}, {(x, y) | ρx + τy > t},
and {(x, y) | ρx+ τy 6 −t} have the same value. Since these
four sets cover the support of f , it follows thatZ

f2 dγ2 6 4

Z
x>t

f2 dγ2(x, y) .

Since θt is 1-Lipschitz, we can bound |f(x, y)| by

|θt(x)− θt(ρx+ τy)| 6 |θt(x)− θt(ρx)|+ |θt(ρx)− θt(ρx+ τy)|
6 ε|x|+ τ |y| .

If x > t, then f(x, y) = x− t− θt(ρx+ τy). Therefore,Z
x>t

f2 dγ2(x, y) 6 2ε2

Z
x>t

x2 dγ(x) + 2τ2

Z
x>t

1 dγ(x) .

The standard Gaussian tail bound assertsZ
x>t

1 dγ(x) 6 1√
2π
e−t

2/2/t = t2‖θt‖2 .

Similarly, it is also straight forward to showZ
x>t

x2 dγ(x) 6 O(te−t
2/2) = t4‖θt‖2 .

Putting the two bounds together, we can conclude

〈θt, (I − Uρ)θt〉 6 O(ε2t4)‖θt‖2 +O(εt2)‖θt‖2.

This bound implies the lemma, since we can assume εt2 6 1
(otherwise, the lemma is trivially true).
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