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Abstract

This work studies several questions about the optimality of semidefinite
programming (SDP) for constraint satisfaction problems (CSPs).

First we propose the hypothesis that the well known Basic SDP relaxation
is actually optimal for random instances of constraint satisfaction problems
for every predicate. This unifies several conjectures proposed in the past,
and suggests a unifying principle for the average-case complexity of CSPs.
We provide several types of indirect evidence for the truth of this hypothesis,
and also show that it (and its variants) imply several conjectures in hardness
of approximation including polynomial factor hardness for the densest k
subgraph problem and hard instances for the Sliding Scale Conjecture of
Bellare, Goldwasser, Lund and Russell (1993).

Second, we observe that for every predicate P, the basic SDP relaxation
achieves the same approximation guarantee for the CSP for P and for a
more general problem (involving not just Boolean but constrained vector
assignments), which we call the Generalized CSP for P. Raghavendra (2008)
showed that it is UniqueGames-hard to approximate the CSP for P better than
this guarantee. We show that it is NP-hard to approximate the Generalized
CSP for P better than this guarantee.
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1 Introduction

Some of the most appealing results in algorithms and computational complexity
are meta algorithms or meta reductions that characterize the complexity not just
of a single problem but a whole family of them. Some canonical examples for
meta algorithms include the Ellipsoid algorithm, that applies for all convex
problems admitting efficient separation and membership oracles [GLS81], and
Robertson and Seymour’s algorithm deciding every minor-closed graph property
in polynomial time [RS95, RS04]. One example for a meta reduction is the work of
Lewis and Yannakakis [Yan78, LY80] showing that for large a class of properties,
finding the largest subgraph satisfying the property is NP hard.

Perhaps the nicest case is when we have a complimentary meta-algorithm
and meta-reduction, thus obtaining a meta characterization that determines exactly
the complexity of any computational problem inside some family. The Dichotomy
Conjecture of Feder and Vardi [FV98] is aimed at achieving exactly such a
characterization for the determining the satisfiability of constraint satisfaction
problems (CSPs), and much exciting progress has been made on it [Sch78, HN90,
Bul02, BK09]. In the context of approximation algorithms, Raghavendra [Rag08]
gave, assuming Khot’s Unique Games Conjecture (UGC) [Kho02b], a meta-
characterization of the approximation threshold of all CSPs. In particular he
showed that for every CSP it is Unique Games-hard to beat the approximation
guarantee achieved by a simple semidefinite programming relaxation known as
Basic Sdp.

Recent works, however, have raised some doubts concerning the UGC. In
particular, while the UGC asserts that a certain computational problem known
as Unique Games is NP-hard, it was shown that this problem can be solved in
subexponential time [ABS10], and in fact there is a candidate algorithm that
might solve it much faster than that [BBH+12]. Indeed, showing a distribution
of plausibly hard instances for Unique Games appears to be a challenging
problem [AKK+08, BHHS11, KMM11]. These works form a strong motivation for
basing optimality results on conjectures that are weaker than, or at least different
from, the UGC.1 Moreover, as all of the above meta-characterization results
are in the context of worst-case complexity, and the question of whether such
characterizations can be proven, or are even true, in the context of average-case
complexity, has not been addressed to our knowledge.

This paper shows some results in the above mentioned directions. Specifically,
we study optimality results in two settings:

Average-case complexity We put forward the hypothesis that among polynomial
time approximation algorithms, Basic Sdp is optimal for random CSPs. We
show that this conjecture (and its extentions) would have some interesting
consequences for hardness of approximation, and give some indirect
evidence supporting it. While proving this hypothesis is beyond current

1We note such optimality results will have to differ from those of Raghavendra’s theorem since
his meta-characterization also implies the UGC.
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techniques in complexity, there are many plausible ways to refute it, and
we argue that studying this and similar conjectures is a good approach to
make progress on average-case complexity.

Generalized CSPs We show that, assuming P , NP, Basic Sdp is in fact optimal
for a class of problem that we call generalized CSPs. At a very high level, given
a predicate P, the generalized CSP corresponding to P involves applying P
not just on variables and their negations but an arbitrary linear functions
of the variables (which are allowed now to be not just bits but certain real
vectors). The definition of generalized CSP is motivated by the observation
that Basic Sdp does not really distinguish between generalized CSPs and
real ones. Thus in particular for every predicate P, Basic Sdp yields the
same approximation on the generalized CSP for P that it yields for the CSP
of P. (For example, Basic Sdp yields the same factor 0.87... approximation
for Generalized Max-Cut as the one it achieves for the standard Max-Cut,
and while it is an open question whether this factor can be improved for
Max-Cut, our results imply that it is NP-hard to beat for the generalized
version.)

We now give more details on our results.

1.1 Average-case complexity

For a predicate P : {±1}K → {0, 1}, an instance = of CSP(P) is a set of K-tuples
of literals over the variables x1, . . . , xn. The value of =, denoted val(=), is the
maximum, over all assignments to the variables, of the fraction of tuples that
satisfy P. We say that an algorithm A is a relaxation for CSP(P) if val(=) 6 A(=)
for all instances = of CSP(P). Some examples for relaxations are obtained by
linear and convex programs for CSP(P), including the canonical algorithm Basic
Sdp considered by [Rag08], but in general a relaxation is any algorithm that
always upper bounds the true value. A random instance of CSP(P) is obtained
by selecting m random K-tuples of literals for some parameter m = m(n).2 The
following conjecture states that Basic Sdp is essentially the optimal polynomial
time upper-certificate on random instances of CSP(P).

RCSP Hypothesis (SDP optimality hypothesis for refuting CSPs, informal). Let
P : {±1}K → {0, 1} be a predicate and let ε > 0. Then if for every polynomial time
relaxation A for CSP(P), it holds that for random instance = of CSP(P), almost always
A(=) > Basic Sdp(=) − ε.

(The R in RCSP can stand for either “refutation” or “random”. )
While it is clear what a disproof of the RCSP Hypothesis would consist of,

given the state of art in computational complexity it seems unlikely that it will

2Unless specified otherwise, m will equal cn for some sufficiently large constant c. Also note that
our definition considers tuples of literals (i.e., variables or their negations) and not just un-negated
variables.
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be proven (or even derived from well studied worst-case conjectures such as
P , NP [BT06]) in the foreseeable future. Nevertheless, there are still several
approaches to obtain evidence for its veracity:

– (Reductions) It may be possible to derive the RCSP Hypothesis from
a more well-studied average case conjectures/hypothesis such as Feige’s
Hypothesis [Fei02] about refuting random 3SAT, or conjectures about the
hardness of learning parity with noise [GKL88, BFKL93].

We show a partial result in this direction, observing that Feige’s results can
be restated as showing that his hypothesis implies the RCSP Hypothesis
for the case of predicates of arity at most 3.

– (Integrality gaps) If the RCSP Hypothesis is true, then in particular stronger
mathematical relaxations than Basic Sdp such as its extension to various
hierarchies will not give better results than Basic Sdp on random instances.
Confirming this prediction can be thought of as evidence for the RCSP
Hypothesis.

We observe that the results of Benabbas, Georgiou, Magen, and Tul-
siani [BGMT12] can be adapted to show this prediction for the relaxation
obtained by augmenting Basic Sdp with Ω(n) rounds of the Sherali-Adams
hierarchy, while Tulsiani’s work [Tul09] shows that for particular families
of predicates, the same holds for Ω(n) rounds of the Lasserre hierarchy.

– (Worst-case hardness of approximation results) As was observed in the past,
average-case assumptions such as the RCSP Hypothesis imply worst-case
hardness of approximation results. Confirming such predictions again can
be thought of as providing evidence for the hypothesis.

One can view the classic result of Håstad [Hås01] as some hardness of
approximation on this form, for the case of predicates such as k-XOR and
k-SAT. Our results on generalized CSP’s (see below) are also in this flavor.

Beside being an attractive hypothesis in its own right, we also show that the
RCSP Hypothesis implies the conjecture that predicates supporting pairwise
independent distributions are approximation resistant. This was shown based
on the Unique Games Conjecture by [AM09], so our results gives an alterna-
tive basis for that statement. We also consider generalizations of the RCSP
Hypothesis to larger alphabet and broader sets of parameters, and show that
these generalizations yield hard instances for the “Sliding Scale” conjecture of
[BGLR93] (including its projection game variant [Mos11]), as well as instances for
the problem of obtaining a polynomial approximation for the densest κ-subgraph
problem (see also [BCC+10, AAM+11]).

Remark 1.1. Traditionally in computational complexity it is not very common
to consider “meta-conjectures” such as the RCSP Hypothesis, that posit the
hardness of a large family of problems. Complexity theorists naturally prefer
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the more pleasing “meta-reductions” showing that hardness of a single problem
implies the hardness of a large family. This approach has been particularly
successful in the study of worst-case complexity, where researchers have been able
to base the difficulty of an astounding number of problems based on the single
assumption that 3SAT can’t be solved efficiently. However, such reductions have
been much more rare in average case complexity. Indeed, it seems that reductions
are inherently problematic in this context, as they tend to use various “gadgets”
and other transformations that result in the output of the reduction not being the
natural distribution over the instances of the target problem. Thus in the context
of average-case complexity we propose that such meta-conjectures, positing the
optimality of a certain type of algorithm for a large family of problems, may be
the right way to go forward in establishing at least some more intuition as to
where lies the boundary between hardness and easiness.

On a broader level, there are two general approaches in theoretical Computer
Science to cope with the fact that many our basic questions remain unsolved.
One very useful approach is to try to make the weakest possible conjectures, with
the hope of eventually getting rid of them altogether. The other approach, which
the RCSP Hypothesis belongs to, is to start with the most simple and broad
hypotheses possible and to see what they imply, thereby giving a “large target”
for attempts at refutations. Finding refutations for such hypotheses can obviously
be very instructive, directing research to more plausible directions. On the other
hand, if many refutations attempts fail, this can also be quite useful, as it may
reveal a general principle of nature which could be true even if a proof for it is
very far from our reach. Finally, we note that as bold as the RCSP Hypothesis
seems, it can be strengthened even further, both quantitatively and qualitatively;
see Section 3.4.

1.2 Generalized CSP

Raghavendra [Rag08] showed how an efficient approximation can be attained
for every CSP (contraint satisfaction problem), using an associated SDP which
we call the Basic Sdp. In this paper we define a generalized version of each
such CSP, for which the same Basic Sdp can still be applied, achieving the
same approximation factor. For this generalized CSP, we show that beating
the performance of the Basic Sdp relaxation is NP-hard. This is in contrast to
Raghavendra’s result [Rag08] mentioned above, who showed a much stronger
conclusion —tightness of Basic Sdp on standard CSPs— but under a much
stronger assumption, namely the unique games conjecture. Our work draws
on the techniques of [KKMO04, MOO05, Rag08] developed in the context of the
unique games conjecture, and thus shows that even if this conjecture turns out
to be false, both the techniques and at least some parts of the results obtained
by works relying on it can still be salvaged. Adapting the above techniques to
the case of NP-hardness is similar both in flavor and in techniques to the work
of [GRSW12], where UGC-hardness was replaced by NP-hardness for a class of
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geometric problems rather than CSPs.3

Let P : {±1}K → {0, 1} be a predicate. Our starting point is the observation
that the Basic Sdp algorithm for CSP(P) actually obtains the same guarantee to a
more general problem that we call the generalized CSP for P, denoted GCSP(P).
The definition of GCSP(P) is a bit subtle (see more below), but roughly speaking
it involves placing additional constraints on the assignment that can be enforced
by semidefinite programming. Given the way we tailor the definition to Basic
Sdp, it is perhaps not surprising that this relaxation achieves the exact same
approximation for GCSP(P) as CSP(P). What is more surprising is that now we
are able to prove that this approximation guarantee is optimal, and cannot be
improved upon by any efficient algorithm unless P = NP. (See §4 details and
Section 4.5 for proofs.)

Theorem 1.2. For every c, s ∈ R with 0 < s < c < 1 and predicates P : {±1}K → {0, 1},
the promise problem (c, s)-Gap GCSP(P) is either NP-hard or solvable in polynomial
time (by Basic Sdp). Furthermore, Basic Sdp solves (c, s)-Gap GCSP(P) if and only if it
solves (non-generalized) (c, s)-Gap CSP(P).

Defining generalized CSP. We now give more details about the definition of
generalized CSPs. The definition is closely tied to the Basic Sdp algorithm (see
Section 2), and so we start by reviewing it. Let P : {±1}K → {0, 1} be a predicate,
and let = be an instance of CSP(P) over n variables. An assignment to = is a
Boolean vector x ∈ {±1}n and the value of x, denoted val(x), is the fraction of the
constraints it satisfies. The Basic Sdp algorithm optimizes over a larger convex
set X, (which we call the set of SDP assignments) which embeds inside it all the
Boolean vectors. For an SDP assignment X, we denote by sval(X) be the value that
the SDP outputs on X. One can define a canonical rounding algorithm that maps
every SDP assignment X ∈ X into a Boolean assignment x ∈ {±1}n [Rag08], and
we define rval(X) to be the value of this Boolean assignment. (If X was already
integral, i.e., (isomorphic to) a single Boolean assignment x then the rounding
algorithm just returns x, and hence rval(X) = sval(X) = val(x).) So, an equivalent
way to phrase the problem CSP(P) is that we want to find the maximum of rval(X)
over X ∈ X, while the Basic Sdp algorithm can find the maximum of sval(X) over
the same set. That is, instead of considering the goal of CSP(P) as finding a good
Boolean assignment, we think of it as finding a “well roundable” / near-integral
SDP assignment.

For every X ∈ X, we have that

α sval(X) 6 rval(X) 6 sval(X) , (1.1)

where α is called the integrality gap ratio of the program. Clearly, Basic Sdp is an
α-approximation for CSP(P). But because (1.1) holds pointwise for every X ∈ X,

3We note that in [Rag08], the term “generalized CSP” was used for constraints which are
real-valued rather than Boolean valued. Our notion is different, as we consider Boolean valued
constraints where the variables which appear in them are real-valued.
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one can see that even if we placed additional linear and semidefinite constraints
on X, thus restricting the set X into some subset X′, then Basic Sdp still yields
an α approximation for this more general program. This general problem is the
generalized CSP problem. That is, an instance to GCSP(P) consists of a set of
K-tuples of literals, as well as some additional constraints that we place on the
SDP solutions X, and the goal is to find a “well roundable” / near-integral SDP
solution meeting those constraints.

Are generalized CSP natural? We think that the mere fact that GCSP(P) has
the same approximation as CSP(P) but it is NP-hard to beat already shows that
this problem is non-trivial. But one may wonder if the generalized CSP problem
is also interesting on its own right. While the definition of the problem is indeed
closely tied to the Basic Sdp algorithm, we believe that it also of some independent
interest. One way to think about SDP assignment is as distributions over Boolean
assignment, while the additional constraints posit certain correlations between
the random variables comprising this distribution (e.g., a typical such constraint
for generalized Max Cutwill require that if i and j are in the left side of the cut,
then k is also likely to be on that side). One can imagine that solving a CSP with
such weak side constraints could be useful in some applications.4

Evidence for the Unique Games Conjecture? The UGC implies Basic Sdp is
optimal for Generalized CSPs. Our results they confirm this prediction of this
conjecture, they constitute evidence for the truth of the UGC. However, there is
also evidence that Generalized CSPs are strictly harder computationally than
(non-generalized) CSPs: Our NP-hardness reductions from smooth Label Cover
to Generalized CSPs have linear running time. There is some evidence that
smooth Label Cover (with the parameters that we need) is exponentially hard
(see Remark 3.8), which would imply that it is exponentially hard to beat the
approximation guarantee of Basic Sdp for Generalized CSPs. In contrast, for
some (non-generalized) CSPs, it is known how to beat the approximation of Basic
Sdp in subexponential time [ABS10].

1.3 Our techniques

In this section we outline some of the techniques used in the proof of Theorem 1.2—
optimality of Basic Sdp for generalized CSP’s— which is our most technical
result. We focus on the case of the generalized Max Cut problem, which we also
deal with more formally later, in Subsection 4.3. Going from generalized Max
Cut to generalized CSPs of other types follows quite closely the transition made
in [Rag08] from (non-generalized) Max Cut to other (non-generalized) CSPs.
Both our construction and the proof are generalizations of the Unique Games-
hardness of the Max Cut problem [KKMO07, MOO10], and readers familiar with

4Note that the constraints are weak rather than precise linear relations between the variables,
since the rounding function can introduce some errors.
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that result as well as [Rag08] should see the similarities. We also use techniques
similar to the ones from [GRSW12].

We begin by describing the (c, s)-gap generalized Max Cut problem. As
described above, this is the problem of finding an SDP solution which satisfies
not just the constraints that result from the Max Cut instance but also additional
linear constraints, and has a high expected value when rounded. The goal in
generalized Max Cut is to find such an SDP solution which is rounded to the
best possible integral solution by the standard rounding procedure. Specifically,
the (c, s)-gap problem is that of distinguishing between the case where there
exists an SDP solution that is rounded to a integral solution with value c, and the
case where no SDP solution which satisfies the additional linear constraints get
expected integral value greater than s.

The Basic Sdp algorithm for max-cut is the well known Goemans-Williamson
SDP [GW95], which can be thought of as maximizing the sum of E

1−yi y j

2 over
all edges (i, j) in the input graph, where (if the graph has m vertices) y1, . . . , ym
are Gaussian random variables satisfying E |yi|

2 = 1 for all i.5 The rounding
function of this SDP is simply obtained by taking the sign of the Gaussians (which
would of course not lose anything if they were degenerate random variables
with variance zero), and hence one way to phrase the (non generalized) Max Cut
problem is that the aim is to find Gaussian variables y1, . . . , ym maximizing the

sum of E
1−sign(yi) sign(y j)

2 over all edges (i, j).
For the (c, s)-gap generalized Max Cut problem, we want to optimize the SDP

solution under additional constraints, and in particular we allow the instance
to require some linear constraints on the correlations between these Gaussians.
A natural way in which this can be achieved is that the instance specifies that
each gaussian yi must be a linear combination of some other gaussian variables.
Another way to say the same thing is that an instance of generalized Max Cut
will consists of a graph on m vertices where each vertex is identified with some
linear function from Rn to R. Thus, now we aim to find Gaussians x1, . . . , xn that
maximize the sum of E 1−sign(a(x)) sign(b(x))

2 over all edges (a, b). This leads us to the
following definition:

Definition 1.3. (c, s)-gap generalized Max Cut is the following promise problem:
Given a distribution over pairs of linear functions (a, b) over Rn, distinguish
between the following cases:

YES: there exists x ∈ {0, 1}n such that a(x) ∈ {±1} for all linear forms a appearing
in = and P(a,b)∼= {a(x) , b(x)} > c,

NO: for every n-dimensional random vector x whose coordinates are jointly

5The above description is equivalent to the more common description of the program with
vectors, since every vector vi can be associated with a Gaussian random variable yi obtained
by taking 〈vi, 1〉 for a random Gaussian, and visa versa. (To generate non-symmetric Gaussian
variables one can introduce an additional vector v0 and identify it with the Gaussian variable that
is identically 1.)
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Gaussian, which satisfies Ex xxT > 0 and E a(x)2 = 1 for all linear forms a
appearing in =, we have ExP(a,b)∼=

{
sign(a(x)) , sign(b(x))

}
6 s.6

To make the connection to other CSPs more apparent, we state our result for
generalized Max Cut in a generic way as follows.

Theorem 1.4. Let c, s ∈ R with 0 < s < c < 1 and c > 0.845.7 If there exists a
(c, s) SDP-gap instance (with respect to the Goemans-Williamson Max Cut SDP) for
(non-generalized) Max Cut, then (c, s)-gap generalized Max Cut is NP-hard. On the
other hand, if (c, s)-gap Max Cut is solvable by the Goemans-Williamson Max Cut
algorithm, then so is the (c, s) generalized Max Cut gap problem.

As the generalized Max Cut problem is obtained by linear constraints on
an SDP solution, it’s not hard to show that for pairs (c, s) where the Goemans-
Williamson algorithm solved Max Cut it will also solve generalized Max Cut.
Let us therefore see how a (c, s) integrality gap for Max Cut translates to an
NP-hardness result.

The projection test. In [Rag08], it is explained how to transform an integrality
gap instance of a CSP into a long-code test for a function f : {−1, 1}R → {0, 1}.
For the specific case of Max Cut, this reduction was shown by [KKMO04] and
works as follows: Pick a random edge (i, j) from the instance, and choose ρ to
be the correlation between the Gaussian vectors xi and x j supplied by the SDP
solution for the instance. Then pick a, b ∈ {−1, 1}k to be random Boolean vectors
with correlation ρ between the coordinates ai and bi for each i, and accepts if
f (a) , f (b). To get NP-hardnes, though, it is not enough to consider a dictatorship
test – we need a test for projections, namely one that works for two functions
on different domains f : {−1, 1}d·R → {0, 1} and 1 : {−1, 1}R → {0, 1}, with a given
projection function π : [d · R] → [R]. Oversimplifying, the test should verify
that f is an i dictatorship for some i, that 1 is a j dictatorship, and that π(i) = j.
However, because the functions have so different domains, natural attempt at
a test makes the distribution of the larger input a be very far from the uniform
distribution, and instead depend strongly on the particular projection π. On an
intuitive level this is a bad thing, since the function f might be very far from a
dictator globally, but agree with a dictator on this particular distribution. Indeed,
no such test is known.

Our solution to this problem, which follows a similar approach to [GRSW12],
is to use the additional linear constraints to bypass this issue. Roughly speaking,
one can define a simple linear map Lπ that takes a function f : {±1}dR

→ R and
maps it into a function f ′ : {±1}R → R such that if f is an i dictatorship then f ′ is
a π(i) dictatorship. Indeed, the map Lπ is defined by simply requiring it to satisfy

6Note that the requirement that Ex xxT > 0 is another linear constraint on the correlation matrix.
For showing the problem is easy we can generalize to all such linear constraints, but our hardness
proof only requires this one.

7In this range of c the Goemans-Williamson rounding is optimal for Basic Sdp of Max Cut
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this property for the dictatorships, and extending it linearly to all other functions.
In our problem we can enforce this kind of linear relation between f and f ′, and
so at least are in the position where we can syntactically apply the same test on
f ′ and 1, which are now on the same domain.

However, there is a host of technical issues that must be overcome to show the
test actually works. To prove soundness for this test, we need to show a that (very
roughly speaking) the map Lπ has the property that if Lπ f is close to a dictator (or
more accurately, has an influential coordinate) then so is the original function f .
It’s very easy to show that this is not generally true, and that for every π one can
come up with a function f that is far from a dictator but Lπ f is very close to one.
Indeed, one example would be to fix some j0 ∈ [R] and take f to be the sum over
all i ∈ π−1( j0) of the ith dictator. However, here is where (as in [GRSW12]) the
technical property of smoothness comes to the rescue. This property means that
for every function f which is a sum of dictatorships, with non-negative weight wi
for the ith dictatorship, if we look at a “typical” projection π that will arise in our
reduction, then the the sum of the weights in each of the “buckets” π−1( j) will be
roughly the same. Now some additional complications arise since in our cases
these “weights” may be negative, and in fact are not even numbers but actually
vectors. Here we use some properties of moments of Gaussians, together with
the condition on non-negative correlations, to argue that cancelations will not be
an issue. The above is clearly only a very rough outline of the proof, which is
given in Section 4.

2 Preliminaries

A Gaussian vector (over some R-vector space) is a vector-valued random variable
with coordinates drawn from a joint Gaussian distribution. We do not assume
symmetry. In particular, the mean of a Gaussian vector is not necessarily the 0
vector.

Boolean CSPs. Let P : {±1}K → {0, 1} be a Boolean predicate. A CSP(P) instance
= with variable set V = [n] is specified by a collection of ordered K-tuples of
literals. We identity K-tuple of literals with functions S : {±1}V → {±1}K such
that each output bit S(x)i depends on at most one coordinate of x ∈ {±1}V. The
value of an assignment x ∈ {±1}V is defined as =(x) = ES∈= P(S(x)). We denote
the maximum value of an assignment by opt(=) = maxx∈{±1}V =(x).

Basic SDP Relaxation. For every CSP(P) instance=, we associate a semidefinite
program Basic Sdp(=). A solution for Basic Sdp(=) consists of an n-dimensional
Gaussian vector x and a collection of distributions {µS}S∈= over {±1}K. The
solution is feasible if for every S ∈ =, the first two moments of the distributions
S(x) and µS match. (Here, we extend S to Rn in a multilinear way.) Concretely,
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every K-variate quadratic8 polynomial Q satisfies Ex Q(S(x)) = EµS Q. The value
of such a solution is defined as ES∈=EµS P ◦ S. We denote the maximum value of
Basic Sdp(=) by opt(Basic Sdp(=)). For brevity, we will often drop opt(·) and use
Basic Sdp(=) also to refer to the optimal value of the SDP relaxation.

Since a feasible Gaussian vector x is supposed to model (a distribution over)
points in {±1}n, its diagonal second moments are Ex x2

1 = . . . = Ex x2
n = 1. We refer

to this constraint as normalization condition.
For 0 < s < c < 1, we say that Basic Sdp achieves a (c, s)-approximation for

CSP(P) if every CSP(P) instance = with Basic Sdp(=) > c also satisfies opt(=) > s.

3 The SDP optimality hypothesis for random CSPs

In this section we formulate more precisely the RCSP Hypothesis, and show some
of the evidence supporting it, as well as its implications. We also consider some
extensions of the hypothesis to higher alphabet, and non-constant parameters,
and discuss their implications.

3.1 Random CSPs

For every n,m and P : {±1}K → {0, 1}, we let CSPn,m(P) denote the distribution
over instances of CSP(P) obtained by taking m random K-tuples over n variables.
We let val(P) denote the expected value a random assignment gives to a CSP(P)
instance, namely val(P) = EP(UK) where UK is the uniform distribution over
{±1}K. We note the simple fact that the optimal value of random instances of
CSP(P) is asymptotically equal to the value obtained by a random assignment:

Lemma 3.1. For every K, ε, δ there is c = c(K, ε, δ) such that for all P : {±1}K → {0, 1} and
m > cn, if= is chosen at random from CSPn,m(P) then a.s. val(=) 6 val(=) 6 val(=)+ε.

Proof. Since val(=) is the maximum value over all assignments, clearly val(=) 6
val(=) for all =. Now for the other direction, we claim that for sufficiently
large c, with high probability over the choice of the m tuples S1, . . . ,Sm, we will
have that for every x ∈ {±1}n, the distribution D = D{Si},x obtained by taking
i←R [m] and outputting (y1, . . . , yK) = Si(x) is ε-close to the uniform distribution
in statistical distance, thus concluding the proof. This will follow from a simple
concentration+union bound argument. Using the Vazirani XOR Lemma, it
suffices to show that for every fixed vector a = (a1, . . . , aK) ∈ {0, 1}K and fixed x, the
probability over the choice of the Si’s that (*) |

∑
i∈[m]

∏K
j=1 Si(x)

a j

j −m/2| > mε/2K

is less than δ2−n. But because the Si’s are chosen independently at random, and in
particular the negation pattern added to them is random, for every x the random
variables b1, . . . , bm where bi =

∏K
j=1 Si(x)

a j

j are unbiased and independent, and

hence the probability of (*) is at most exp(−ε2m/4) which can be made sufficiently
small by taking c large enough. �

8Here, quadratic means degree at most 2.
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3.2 Characterizing the SDP value of CSP(P)

We now make a simple, but very useful observation, that has been implicitly
made in other works as well [AH11]— the value that Basic Sdp returns on random
instances of CSP(P) is equal to the maximum of EP(D) taken over all pairwise
uniform distributions D over {±1}K.

Theorem 3.2. Let P : {±1}K → {0, 1}, and let val(P) equal the maximum of EP(D) over
all pairwise uniform distributions D over {±1}K. Then:

1. For every instance = of CSP(P), Basic Sdp(=) > val(P).

2. For every ε, δ > 0, there is c = c(K, ε, δ) such that if = is a random instance
of CSP(P) with n variables and at least cn tuples, then with probability 1 − δ,
Basic Sdp(=) 6 val(P) + ε.

Proof. Let = be a CSP(P) instance, consisting of m tuples of literals S1, . . . ,Sm
over the variables x1, . . . , xn. A Basic Sdp assignment for = consists of n random
variables X1, . . . ,Xn (that can be thought of as real vectors over some sample
space Ω), and m distributions µ1, . . . , µm, each over {0, 1}K (and hence can be
given by 2K numbers in [0, 1] summing to 1). The distribution µi is “supposed”
to correspond to the restriction of the random variables X1, . . . ,Xn to the literals
in Si, but the only constraints that it needs to satisfy is that it agrees with this
distribution up to the first two moments. That is, if we let (Y1, . . . ,YK) be the
distribution Si(X1, . . . ,Xn), and let (Z1, . . . ,ZK) be distributed according to µi, then
for all j, j′ ∈ [K], EY jY j′ = EZ jZ j′ , and EY j = EZ j. The value of the assignment
is EiEP(µi), and the value Basic Sdp(=) is the maximum of this value over all
assignments.

1. Let D be the pairwise uniform distribution that achieves val(P), letting
X1, . . . ,Xn be orthogonal unit vectors, and let µi = D for all i, then we get a
valid Basic Sdp assignment that demonstrates that Basic Sdp(P) > val(P).

2. Suppose that there is a Basic Sdp assignment X1, . . . ,Xn, µ1, . . . , µm that
achieves val(P) + ε. Let µ be the distribution over {±1}K obtained by taking
i ∈r [m] and (y1, . . . , yK) ∈r µi. We denote the resulting distribution by
(Y1, . . . ,YK). Then EP(µ) = val(P) + ε which means that µ is not pairwise
uniform. In particular we get that there must be either (i) j ∈ [K] such
that |EY j| > ε′ or (ii) some j , j′ ∈ [K] such that |EY jY j′ | > ε′ for some
e′ = Ω(ε/k2) > 0. But, if c is big enough then both (i) and (ii) are highly
unlikely. First, it’s easy to see for c large enough we would have that all
but small fraction of the vertices, the number of times they appear in the
jth coordinate positively will be up to some 1 ± ε′ factor the same as the
number of times in that coordinate negatively, thus ruling out (i). Second,
if we consider the 2XOR game obtained by taking for every tuple Si the
constraint that the product of the jth and j′th literals is 1 (or −1), then it is a
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random 2XOR game, and it is known that (since the underlying graph will
be an expander) the Basic Sdp value of this game will tend to 0 with c, thus
ruling out (ii).

�

We can now restate the RCSP Hypothesis:

RCSP Hypothesis (SDP optimality hypothesis for refuting CSP’s, formal version).
Let P : {±1}K → {0, 1} be a predicate, let ∆ > 0 and let m(n) be some function such that
m(n) 6 ∆n. Then for every polynomial time relaxation A for CSP(P) and ε, δ > 0, we
have that for all sufficiently large n

P[A(=) 6 val(=) − ε] < δ ,

where this probability is over = chosen from CSPn,m(n)(P).

Combining Lemma 3.1 with Theorem 3.2, we see that the RCSP Hypothesis
implies that predicates supporting a pairwise uniform distribution are approxima-
tion resistant in the sense of [AH12]. That is, for every predicate P : {±1}K → {0, 1},
if there exists a pairwise uniform distribution D whose support is contained in
P−1(1), then for every ε > 0 there is no polynomial-time algorithm B to distinguish,
given an instance = of CSP(P), between the case YES that val(=) = 1 − ε and the
case NO that val(=) 6 val(=) + ε. Indeed, if there was such an algorithm B then
we could construct a relaxation algorithm A contradicting the RCSP Hypothesis
by simply having A(=) output 1− ε if B(=) =“NO”, and A(=) output 1 otherwise.

3.3 Some evidence for the SDP optimality hypothesis

The RCSP Hypothesis is fairly bold, in the sense that it posits average-case
hardness of a large family of problems, and so we would like to investigate
whether it can actually be true. There are two types of evidence for such an
hypothesis— (a) we could show that the hypothesis (or at least variants of it)
is implied by seemingly weaker or more well studied conjectures, and (b) we
could verify some of the predictions it makes, that is independently prove some
the hypothesis’ implications. As discussed in Section 1.1, we offer evidence of
both types for this hypothesis. While we believe more investigations are merited,
we believe these results do suggest that the RCSP Hypothesis may be true.

3.3.1 Relation to Feige’s Hypothesis

Feige made the hypothesis [Fei02, Hypothesis 2] that for every ε > 0 there is no
algorithm that can certify that the value of a random 3SAT instance (i.e., taken
from CSPn,O(n)(OR) in our notation) is smaller than 1−ε. Though he didn’t phrase
it in those terms, Feige’s results show that his Hypothesis 2 implies the special
case of the RCSP Hypothesis for 3-ary predicates. Specifically, Theorem 2 in
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[Fei02] shows that under his Hypothesis 2, for every predicate P : {±1}3 → {0, 1},
it is hard, given a random= ∈ CSPn,O(n)(P) to certify that val(=) 6 b(P)/4, where b
is the number of x ∈ P−1(1) such that x1x2x3 = +1 (or −1, if that number is greater).
However, it is not hard to show that for a 3-ary predicate P, val(P) = b(P)/4.

In fact, Feige’s work can be used to show that for every non-trivial predicate
P : {±1}3 → {0, 1} (i.e., where val(P) < val(P)), the special case of the RCSP
Hypothesis for P implies the hypothesis for all 3-ary predicates. For completeness
we show a full proof of this result for the case of XOR.

Theorem 3.3. Suppose that RCSP holds for the 3XOR predicate then it holds also for
every other predicate P : {±1}3 → {±1}.

Proof. For this proof it will be convenient to extend our notion of predicates to
general functions P : {±1}3 → R (and not just those that have output in {0, 1}).
Note that the SDP value, as well as the notions of val,val,val easily extend to
this case. In particular, it will be convenient to define the predicate 3XOR as
simply outputting the product x1x2x3 of its inputs. (The 0/1 definition of 3XOR is
P0(x1, x2, x3) = (x1x2x3 − 1)/2, but clearly if you can refute one then you can refute
the other and so the two definitions are equivalent in computational difficulty.)

Let P : {±1}3 → {0, 1} be some predicate, and write P as a multilinear poly-
nomial in the variables x1, x2, x3 of the form ax1x2x3 + P′(x1, x2, x3) + b where
a, b ∈ R and P′ has no constant term and degree at most 2. Suppose that
there is an algorithm A that can certify that a random instance = of CSP(P) has
valP(=) 6 val(P)− ε (where valP(=) denotes the value of the set of tuples =when
thought of as an instance of CSP(P)). We’ll construct an algorithm B that can
certify that val3XOR(=) 6 1 − ε′ for some ε′ > 0 that tends to zero with ε. The
algorithm B will first certify that |valP′(=)| < ε/2 using Basic Sdp (which can be
done since since for every f : {±1}3 → R of degree at most 2 without a constant
term, val( f ) = val( f ) = 0). Now this means that for every assignment x,

E
S←R=

P(S(x)) ∈ a E
S←R=

3XOR(S(x)) + c ± ε/2 .

Assume a < 0 (the other case is symmetric). Thus, if we want to certify that
val3XOR(=) 6 1 − ε/2, it suffices to certify that valP(−=) 6 |a| + c − ε, where
−= is obtained by flipping all signs in the literals of =. Indeed, otherwise, if
val3XOR(=) > 1−ε/2, then valP(−=) would have been at least |a|(1−ε/2)+c−ε/2 >
|a| + c − ε, since it’s easy to see that c 6 1. So the result follows by showing
that val(P) 6 |a| + c, which holds since for every pairwise uniform distribution
D over {±1}3, EP′(D) = 0, while |Ex←RDx1x2x3| 6 1. (In fact, val(P) = |a| + c, as
demonstrated by the distribution (x1, x2,−x1x2).) �

3.3.2 Integrality gaps

If the RCSP Hypothesis is true, then on random CSP instances, Basic Sdp
can’t be beat by even much more powerful algorithms. Thus, one way to get
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more evidence for our hypothesis is to verify this prediction for some particular
algorithms. Specifically, we will be interested in semidefinite programming
hierarchies, which are systematic way of strengthening Basic Sdp to obtain tighter
relaxations (see the survey [Lau03]). We observe that prior works, though not
phrases in those terms, establish particular predictions of the RCSP Hypothesis:

Theorem 3.4 (Implicit in [BGMT12]). For every P : {±1}K → {0, 1}, ε > 0,∆ ∈ N,
there exists δ > 0 such that for sufficiently large n, if = is drawn randomly from
CSPn,∆n(P), with probability at least −1ε, the program obtained by augmenting Basic
Sdp with δn levels of the Sherali-Adams hierarchy outputs at least val(P) − ε.

Proof. Benabbas Georgiou Magen Tulsiani [BGMT12, Theorem 4.3] proved that
this holds for the case that val(P) = 1 (i.e., when there is a pairwise uniform
distribution supported on P−1(1)). However, the proof easily extends to the
general case. �

For the stronger SDP hierarchy of Lasserre, this is not yet currently known.
However, it is known for the special case of subspace predicates, which are predicates
P : {±1}K → {0, 1} such that if we identify {±1}K with FK

2 in the obvious way, then
P−1 is an affine subspace. For such a predicate, let d(P) be the minimum weight of
the dual subspace to P−1(1). In other words, this is minimum number of variables
in a linear equation over x1, . . . , xK that is satisfied by all x ∈ P−1(1). It’s not hard
to see that if d(P) > 3 then val(P) = 1. Tulsiani [Tul09, Theorem 4.3] showed for
such P, Ω(n) rounds of the Lasserre hierarchy give value 1 on random instances
of CSP(P).

3.3.3 Hardness of approximation results

Another consequence of the RCSP Hypothesis would be some worst-case hardness
of approximation results. Since a random instance of CSP(P) has value roughly
val(P), any approximation algorithm that can distinguish between instances with
this value and instances with value val(P) − o(1) would refute the hypothesis.
Thus, another way to increase confidence in the hypothesis would be to derive
these predictions based on more standard and widely believed assumptions such
as P , NP. We were not able to prove this result, which is of course interesting in
its owb right. However our results on generalized CSP can be viewed as making
some progress for confirming these type of predictions.

Remark 3.5. Note that if the Unique Games Conjecture was true, then Raghaven-
dra’s Theorem of course implies that it’s NP-hard to beat Basic Sdp. However,
we don’t consider this as strong evidence for the RCSP Hypothesis. First, as
mentioned, it is not at all clear that the UGC is true. Second, even if true, the
UGC seems not to say much about random or even pseudorandom instances, for
which algorithms beating the UGC’s predictions are known (indeed Basic Sdp
itself can sometime work better than the worst case on such instances [AKK+08]).
Furthermore, it is known that UniqueGames-hardness cannot establish exp(Ω(n))
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or exp(n1−o(1)) hardness for a problem, while the integrality gaps suggest that it
may even be hard to beat Basic Sdp on random instances in subexponential time.

3.4 Extensions of the RCSP Hypothesis and their applications

While there is more evidence for “vanilla” version of the RCSP Hypothesis, there
are several natural ways to quantitatively strengthen it that are not known to be
false, and some of these, if true, will have interesting applications.

Super polynomial running time. While the hypothesis is stated equating
“efficient” with polynomial time, it seems just as valid to assume that there is no
exp(no(1))-time algorithm that beats Basic Sdp. In fact, current integrality gaps
support even the conjecture that beating Basic Sdp on random instances will take
at least exp(Ω(n)) time, where the constant in the Ω notation may depend on the
parameters (accuracy parameter ε, predicate arity parameter K, clause to variable
ratio parameter ∆).

Non binary alphabet. A very natural extension is to consider predicates over
alphabet q > 2. One way to represent them is as P : RK

→ {0, 1}, where R is a
ring of size q (or perhaps a field if q is a prime or prime power). Following prior
works on integrality gaps and proof complexity [Tul09], we’ll use the convention
that a literal yi would correspond to not just a variable xi or its negation (which
has no meaning here) but it would be a shift of xi by some arbitrary a ∈ R (where
for R = F2, a = 0 corresponds to taking the variable, and a = 1 corresponds to
negating it). This preserves the property that a random instance of CSP(P) would
have value roughly val(P).

Super constant parameters. While the conjecture is stated for parameters (such
as accuracy ε, arity K, and clause to variable ratio ∆) that are constant, it may very
well hold for values of these parameters (as well as the alphabet size parameter
q mentioned above) that are super-constant functions of n. In particular, current
knowledge seems consistent with the conjecture being true for K,∆, q, 1/ε all
being up to some value nδ for some small δ > 0. Such versions of the conjecture
can be used to derive much stronger hardness of approximation results.

Remark 3.6 (Determining thresholds for parameters). It is an interesting question
whether SDP’s can be used to predict the precise hardness thresholds for these
parameters. A case in point is the value of the clause to variable ratio ∆ for
refuting random 3XOR (or 3SAT) instances. The best polynomial-time algorithms
known work for ∆ that is at least (roughly)

√
n.9 This is not done by Basic Sdp

9Interestingly, Feige, Kim and Ofek [FKO06] gave non-deterministic algorithm for refuting
random 3XOR or 3SAT instances with ∆ ∼ n0.4. However, there is no efficient algorithm that
matches their performance, and moreover their algorithm was for the case that ε is smaller than
n−0.2.
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(that always outputs at least val(P) for any predicate P) but can be achieved by
a polynomial-time extension of Basic Sdp. (One example is an algorithm that
would work for ∆ >

√
n is an SDP we call “local Lasserre” where one adds for

every subset S of variables that appear in some tuple/clause, a vector that is
supposed to correspond to

∏
i∈S xi, with the appropriate consistency constraints.)

Thus, one could hope to make a stronger SDP optimality conjecture that will
pinpoint the right value of ∆. A more tricky question is whether SDP’s can
help pinpoint the minimum possible value for our “completeness parameter”
ε. While setting ε to be an arbitrary small constant seems to keep the problem
hard, and maybe we can even set it equal to n−δ for some small δ > 0, we do not
know of a very principled way to hypothesize the right hardness threshold for ε.
Consider again the case of 3XOR: although for ε = 0 the problem can be easily
solved via Gaussian elimination, even very strong SDP’s such as Ω(n) rounds of
the Lasserre hierarchy cannot recover this algorithm, and hence do not yield a
prediction on the right bound for ε. A related question is in what cases taking
ε = 0 (i.e., “perfect completeness”) still keeps the problem hard. Clearly having
the predicate be non-linear (under any encoding of the alphabet) is a necessary
requirement, but it is not clear that it is a sufficient one.

Decision version of the RCSP Hypothesis. There is also a natural way to qual-
itatively strengthen the RCSP Hypothesis. For any NP promise set (Y,N) (where
there is always a certificate/witness to certify that x < N), given distributions
DY,DN over these sets, one can define three variants of average-case computa-
tional problems: (i) The decision problem is to distinguish, given an input x drawn
randomly from eitherDY orDN, which is the case with success noticeably larger
than 1/2. (ii) The search problem is to find, given x drawn fromDY the witness
that certifies that it is at least not in N . (iii) The refutation problem is to certify,
given x drawn from DN, that x is not in Y, by giving an algorithm that never
outputs “NO” on x ∈ Y, and typically outputs “NO” on x fromDN.

The decision problem is obviously easier than the refutation and search
problem, which are in general incomparable, although in some cases search to
decision reductions are also known. We formulate now a decisional version of
the RCSP hypothesis, which posits that its hard to distinguish between random
CSPinstances, and instances in which we “planted” a solution:

DCSP Hypothesis (SDP optimality hypothesis for deciding CSPs, informal). Let
D0 be a pairwise uniform distribution over {±1}K and let ε, δ > 0 and ∆ > 1. Let
CSPn,m,k be the uniform distribution of taking m random K-tuples of literals over n
variables, and letDY(n,m, k,D0, ε) be the distribution over such tuples that is output by
the following process:

1. Pick x0 ←R {±1}n.

2. For i = 1 . . .m, the ith tuple S is chosen as follows. With probability ε, S is chosen
to be a random K-tuple of literals. With probability 1−ε, we pick random d←R D0,
and pick S to be a random K-tuple of literals conditioned on S(x0) = d.
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Then for every polynomial-time algorithm A, if n is sufficiently large and m = ∆n it
holds that ∣∣∣EA(CSPn,m,k) − EA(DY(n,m, k,D0, ε)

∣∣∣ < δ .
Note that the DCSP Hypothesis talks about pairwise uniform distributions

over {±1}K, instead of predicates. This is in some sense necessary, since naive
planting of a satisfying assignment, without ensuring that the induced distribution
over tuples is pairwise uniform, would make it easy even for Basic Sdp to detect
the difference between the NO and YES cases. We show in the appendix that
the DCSP Hypothesis implies the RCSP Hypothesis (as is the expected relation
between decisional and refutation assumption). We also show that if one restricts
to the case of “atmoic” pairwise uniform distributions (i.e., those that are not
convex combinations of other pairwise uniform distributions), then the variant
of the RCSP for such distributions is equivalent to the variant of the RCSP
Hypothesis for non-Boolean predicates P that output a value in [0, 1].

Other distributions. Another potential approach to strengthen the RCSP Hy-
pothesis is to consider distributions other than the uniform one on instances. The
integrality gap results do not need the instances to be random, but only require
them to have sufficient expansion properties. However, since these integrality
gaps can also apply to a distribution concentrated on a single input (that thus
can never be hard), they cannot be blindly taken to be evidence of hardness.
Still, while we do not explore this direction in the current work, it is possible
that a much more general version of the RCSP Hypothesis holds, where every
input satisfying a particular condition, randomly perturbing it would result in
a distribution on hard instances. Indeed, conjectures of a somewhat similar
type for Max-3XOR and learning parity with noise were raised by Alekhnovich,
see [Ale03, Conjecture 2], though to our knowledge they have not received much
investigation. Such an hypothesis, if true, would be an interesting dual to the
notion of “smoothed complexity” [ST04]— here perturbing an input would result
in a hard instance, rather than an easy one.

3.5 Applications of the RCSP Hypothesis

The RCSP Hypothesis on its own is a very interesting statement about average-
case complexity, but it also has some implications for hardness of approximation,
and perhaps cryptography. Here are some examples:

Max K-AND. Feige [Fei02, Hypothesis 3] hypothesized that certifying that a
random Max-K-AND formula has value less than 2−c

√
k for some c > 0. He showed

that this hypothesis implies some hardness of approximation results for the 2-
catalog problem, while [AAM+11] showed it implies hardness of approximation
for the densest K subgraph problem. The RCSP Hypothesis posits much bolder
hardness of approximation for this problem, since it’s easy to see that val(K−AND)
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is equal to the maximum, over any d ∈ {±1}K and pairwise distribution D over
{±1}K, of the probability that D = d. In particular, if K = 2` − 1 then, if we
identify every a ∈ [K] with a nonzero linear function over F(2)`, then the pairwise
uniform distribution obtained by choosing b←R F(2)` and outputting the vector
(a(x))a∈[K] demonstrates that val(K − AND) > 2−` = 1/(K + 1). Thus, the RCSP
Hypothesis posits that it is hard to distinguish random K-AND instances, which
have value 2−k, from instances with value 1/(K + 1). These are much stronger
parameters than those hypothesized by Feige (though of course, such worst-case
hardness of approximation does hold if the Unique Games Conjecture is true).

Label cover, sliding scale, densest κ-subgraph. The large alphabet variant of
the RCSP Hypothesis also implies hardness for random instances of the label
cover problem. Recall that in this problem one is given a collection of triples
(i, j, π) where i ∈ [n′], j ∈ [n] and π is a function from [Q] to [q], and the value
of an assignment y ∈ [Q]n′ and x ∈ [q]n is the fraction of triples (i, j, π) such
that π(yi) = x j. In particular, for every set of projections π1, . . . , πK mapping [Q]
to [q], one can consider the predicate P : [q]K

→ {0, 1} such that P(x1, . . . , xK) if
there exists y ∈ [Q] such that πi(y) = xi for all i. A random instance of CSP(P)
corresponds to a random instance of the label cover problem, and it is not
hard to show that (assuming the parameters are chosen appropriately) every
assignment of this label cover instance will have polynomially small value (see
Lemma 3.7 below).10 The RCSP hypothesis implies that it is hard to distinguish
such instances from those where one can satisfy 1 − ε fraction of the triples. In
particular, if we take K, q,∆ that can grow as large as nδ for some small δ > 0,
we get the hardness of approximation predicted by (an imperfect completeness
variant of) the “sliding scale conjecture” of Bellare et al. [BGLR93] and in fact, since
the corresponding instances are projections, this also applies for the projection
game variant proposed by Moshkovitz [Mos11]. Similarly, we can show that this
variant of the RCSP Hypothesis also implies it’s hard to approximate the densest
κ-subgraph problem to some polynomial factor.

Lemma 3.7. Let= be a label cover instance chosen as above with parameters Q, q,K,∆ >
100 satisfying that for some 0 < µ < 1/(20K1/4), Q < qµK/4, 216 log(1/µ) < q. Then with
high probability, every assignment to = satisfies at most 2µ fraction of the triples.

Proof. Let us consider for a fixed assignment x ∈ [q]n, what is the probability over
the random choices of the ∆n tuples (and in fact just the shifts) there exists some
y ∈ [Q]∆n that such that for at least a µ fraction of the i ∈ [∆n], there will be at
least a µ fraction of the j ∈ [K] with the constraint between yi and the jth member
of the tuple satisfied. The probability that it is possible to satisfy a µ fraction of
any particular K-tuple is upper bounded by(

K
µk

)
Qq−µK 6 22 log(1/µ)µKq−µK/4 6 q−µK/8 ,

10Note that this is a stronger statement than the fact that every assignment x ∈ [q]n will satisfy at
most this fraction of the constraints corresponding to the K-sary predicate P.
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under our assumptions. Thus the probability that more than µ∆n of these tuples
will be µ-satisfied is bounded by

2∆nq−µ
2K∆n/8 6 q−

√
K∆n ,

since
√

K∆� 1, we can do a union bound over all qn possible assignments. �

Remark 3.8. Because a random CSP over the alphabet [q] involves random
shifts, the corresponding label cover instance will be smooth with a smoothness
parameter that tends to zero as K tends to infinity. Also, if the image of the
projections π1, . . . , πK is a linear code over FK

q with dual distance at least 3, then
the results of Tulsiani [Tul09] imply that this instance is hard to certify for Ω(n)
rounds of the Lasserre program, just supporting the conjecture that it is in fact
exponentially hard to certify.

Lemma 3.9. Suppose that the RCSP Hypothesis holds with ∆ = polylog(n) and
q, k = nδ for some δ > 0, then there is some δ′ > 0 such that there is no nδ

′

polynomial-
time algorithm for the densest κ-subgraph problem.

Proof sketch. The proof closely follows the work of Bhaskara, Charikar, Gu-
ruswami, Vijayaraghavan and Zhou [BCV+12] who gave Lasserre integrality
gaps for the densest κ-subgraph problem with similar parameters. Their proof
was obtained in fact by reducing a random instance of a particular CSP into
an instance of the densest subgraph problem (the CSP is of the same form as
the one used to obtain random instances of label cover above, and the graph is
essentially the label-extended graph of the label cover instance). In fact in our
case the proof is easier since we don’t need to carry out the completeness proof
for vector assignments but only for actual assignments. They showed that for
a random CSP(P) with for an appropriately chosen K-CSP P over the alphabet
q, the resulting graph will have the property that every κ-sized subgraph has
average degree Õ(K/q), while if P had a satisfying assignment, there will be a
κ-sized subgraph with average degree Ω̃(K). The only thing we need to do to
complete the proof is to note that the same still holds even if P had an assignment
that satisfied, say, 0.9 fraction of its clauses. �

Public key cryptography? The DCSP Hypothesis readily yields a one way
function and hence private key cryptography. An intriguing question is whether
it can yield stronger cryptographic primitives and in particular public key cryp-
tography. This is of significance since we currently have very few candidates for
public key systems, and the most well studied of them can be broken efficiently by
quantum computers, and thus increasing the public key crypto “gene pool” has
been recognized as an important problem (e.g., see the discussion in [ABW10]).
A public key cryptosystem based on the DCSP Hypothesis would arguably be
the first scheme for which we have at least somewhat “principled” reasons for
arguing about its security. Applebaum, Barak and Wigderson [ABW10] made
a step in that direction by giving public key cryptosystems based on hardness
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of random CSPs and the hardness of planted version of the densest k subgraph
problem. In fact, their assumptions can be seen as an instantiation of the RCSP
Hypothesis but with very strong parameters, in particular requiring not just
polynomially large parameters, but also control on the particular polynomial
and relation between them. Reducing those assumptions, or at least finding
principled ways to justify them, would be welcome progress.

4 Optimality of Basic SDP for Generalized CSPs

In this section we formally state and prove our harndess-of-approximation results
for generalized Max Cut and generalized distribution matching, and also for
any generalized CSP. The results are stated in Subsection 4.1, in Subsection 4.2
we define the label-cover problem and the generic rounding scheme of [Rag08]
in a language that suits our needs. We also define there a dictatorship test and
its properties. We then prove NP-hardness for the generalized Max-Cut and
generalized distribution matching problems in Subsection 4.3 and Subsection 4.4
respectively, and in Subsection 4.5 we deal with all other generalized CSPs.
The hardness proofs all rely on a theorem we prove in Subsection 4.6, which
shows how to decode an assignment for a smooth label-cover instance from an
assignment for its composition with a dictatorship test which has non-negligible
influences, which in turn relies on an observation concerning smooth projections
that appears in Subsection 4.7. Finally in Subsection 4.8 we deal with a technical
issue of the sign function not having the Lipchitz property, and in Subsection 4.9
we cite the special case of the Invariance Principle that we use in Subsection 4.4.

4.1 Results

Our general approach for proving meta-characterizations of generalizations of
CSPs is quite versatile. We restrict ourselves to three representative examples
(listed in order of increasing generality).

Generalized Max Cut. This problem is motivated by the Basic Sdp for Max Cut
and the Goemans-Williamson (GW) rounding algorithm [GW95]. A solution to
the Basic Sdp for Max Cut assigns a Gaussian variable with second moment11 1
to every vertex of the graph. (The variables have a jointly Gaussian distribution.)
The GW rounding algorithm draws a sample from this Gaussian distribution and
assigns to each vertex the sign of its sampled value. This rounding algorithm
achieves an approximation factor αGW ≈ 0.878 in the worst case. However, for
integral Basic Sdp solution (i.e., the Gaussian variables are constant), the GW
rounding algorithm has no loss. Hence, the Max Cut problem is equivalent to
finding a Basic Sdp solution that maximizes of the expected value of output of the
GW rounding algorithm. In Generalized Max Cut, we have this same objective

11Here, we mean raw moment EX2 (as opposed to central moment EX2
− (EX)2).
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but with additional restrictions on the Basic Sdp solutions (satisfying certain
linear inequalities). Algorithmically, it is still easy to optimize over Basic Sdp
solutions that satisfy the additional restrictions. Since the GW rounding applies
to any Basic Sdp solution (as opposed to just optimal ones, say), it has the same
approximation guarantee for Generalized Max Cut as for (non-generalized) Max
Cut. We will show that for all ε > 0, it is NP-hard to find Basic Sdp solutions
with these restrictions such that the GW rounding achieves for this solution an
approximation factor of at least αGW + ε.

The kind of restrictions on Basic Sdp solutions we need for our hardness
reductions are fairly simple: We require that the Gaussian variables for the
vertices are linear forms a(x) of an auxiliary Gaussian vector x with nonnegative
second-moment matrix E xxT > 0. At this point, it is convenient to identify the
vertices of the graph with these linear forms. The following summarizes the
formal statement of Generalized Max Cut.

Problem 4.1 ((c, s)-Gap Generalized Max Cut). Given a collection = of pairs (a, b)
of linear forms on Rn, distinguish the cases,

YES: there exists x ∈ Rn
+ such that a(x) ∈ {±1} for all linear forms a appearing in

= and
P

(a,b)∼=
{a(x) , b(x)} > c ,

NO: for every n-dimensional Gaussian vector x with Ex xxT > 0 and E a(x)2 = 1
for all linear forms a appearing in =, we have

E
x
P

(a,b)∼=

{
sign◦a(x) , sign◦b(x)

}
6 s .

We can think of the promise in the YES case as an integral Basic Sdp solution
with value c (for = as a graph on linear forms) generated by the nonnegative
vector x in a linear way. In this case, the expected value of the GW rounding
would be c.

The promise in the NO case is that for every Basic Sdp solution (for = as a
graph on linear forms) that is linearly generated by a Gaussian vector x with
nonnegative second moment matrix Ex xxT > 0, the expected value of the GW
rounding algorithm is at most s.

The following theorem shows a strong dichotomy for the complexity of (c, s)-
Gap Generalized Max Cut, determined exactly by the approximation guarantee
of the GW rounding algorithm.

Theorem 4.2. For all c, s ∈ R with 0 < s < c < 1 and c > 0.845,12 the promise problem
(c, s)-Gap Generalized Max Cut is either NP-hard or solvable in polynomial time (by
Basic Sdp). Furthermore, Basic Sdp succeeds if and only if GW rounding achieves a
(c, s)-approximation for Max Cut, i.e., s 6 arccos(1 − 2c)/π.

12In this range of c, GW rounding is optimal for Basic Sdp of Max Cut.
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We like to mention an interesting known NP-hardness result in the context of
MaxCut and the GW rounding. This result follows from techniques in [GRSW12]
and was communicated to us by Prasad Raghavendra. (Here, we view SDP
solutions as assignments of unit vectors to vertices and we think of the GW
rounding as partitioning the vertices/vectors via a random hyperplane through
the origin. This view is equivalent to ours.) The result is that given a Basic
Sdp solution for a Max Cut instance, it is NP-hard to find a hyperplane that
achieves a strictly better approximation factor for this Basic Sdp solution than
a random hyperplane. We are not aware of any formal relations between this
result and ours. Since for this result, the Basic Sdp solution is part of the input,
the corresponding computational problem is not a generalization of Max Cut.

Generalized Distribution Matching. For this example, we think about CSPs
in a predicate-independent way (similar to the DCSP hypothesis in Section 3.4).
Given a collection K-tuples of literals, the question is what kind of distributions
over {±1}K can be generated by assigning Boolean values to the variables and
outputting the values of a random K-tuple of literals from the collection.

For a distribution D over {±1}K, the following formalizes this problem in the
generalized setting. (Here, a collection of K-tuples of literals is generalized to a
collection of linear maps from Rn to RK.)

Problem 4.3 (Generalized D-Distribution Matching ). Given a collection = of
linear maps A : Rn

→ RK, distinguish the cases,

YES: there exists x ∈ Rn
+ such that D is o(1)-close to the distribution {Ax}, where

A is drawn at random from =. (Furthermore, Ax ∈ {±1}K for all A ∈ =.)

NO: for all Gaussian distributions over vectors x ∈ Rn with Ex xxT > 0 and
Ex‖Ax‖2 6 1 for all A ∈ =, we have Ex Q(Ax) 6 o(1) for all normalized13

multilinear polynomials Q.

(Here, o(1) is a function going sufficiently slowly to 0 with the instance size,
for concreteness say 1/ log log log n. We could introduce another parameter to
absorb the o(1) term. This change would have little effect on our results.)

The NO promise roughly says that only distributions close to uniform can be
generated by the collection = (no matter the assignment x).

We show the following characterization of the complexity of D-distribution
matching. (Assuming the Unique Games Conjecture, this characterization is
known even for non-generalized distribution matching [AH12].)

Theorem 4.4. For every distribution D over {±1}K, the promise problem D-distribution
matching is either NP-hard or solvable in polynomial time (by Basic Sdp). Furthermore,
Basic Sdp succeeds if and only if D is not pairwise-uniform.

13Since the dimension of the space is constant, the choice of the norm is not important.
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Generalized Boolean CSPs. Let P : {±1}K → {0, 1} be a Boolean predicate. For
c, s ∈ R with 0 < s < c < 1, we consider a generalization of (c, s)-Gap CSP(P).
The definition of the problem is based on the generic rounding algorithm for
Basic Sdp (see §4.2 for details). Given an Gaussian vector x as part of a Basic Sdp
solution for a CSP(P) instance=, the rounding scheme (with accuracy parameter η)
computes an assignment for = with value rval=,η(x). If Basic Sdp achieves a (c, s)-
approximation for CSP(P), then for every feasible Basic Sdp solution x with value
at least c for=, we have rval=,η(x) > s−η (see Theorem 4.8). For all fixed accuracy
parameters η > 0, the running time of the rounding scheme is polynomial. In
fact, the running time stays polynomial even for slightly subconstant η, say
η = 1/ log log log n. We will use this choice later to eliminate η as a parameter.

In Generalized CSP(P), the goal is (roughly speaking) to find a Basic Sdp
solution x satisfying certain simple additional constraints so as to maximize
rvalη(x) (the value achieved by the generic rounding scheme applied to x).

Problem 4.5 ((c, s)η-Gap Generalized CSP(P)). Given a CSP(P) instance = with
variable set [n] and a simple cone14

C of n-by-n matrices, distinguish the cases,

YES there exists a Basic Sdp solution x with value at least c for = and second-
moment matrix Ex xxT

∈ C such that achieves rval=,η(x) > c.

NO there exists no Basic Sdp solution x for = with second-moment matrix
Ex xxT

∈ C such that the rounding scheme achieves rval=,η(x) > s − η.

By design, Basic Sdp solves (c, s)η-Gap Generalized CSP(P) for all η > 0 if
it achieves a (c, s)-approximation for (non-generalized) CSP(P). The following
shows a strong dichotomy for the complexity of (c, s)η-Gap Generalized CSP(P).

Theorem 4.6. For all c, s ∈ Rwith 0 < s < c < 1 and every predicate P : {±1}K → {0, 1},
the promise problem (c, s)η-Gap Generalized CSP(P) is either NP-hard, for small enough
η > 0, or solvable in polynomial time for all η > 0 (by Basic Sdp). Furthermore, Basic
Sdp solves (c, s)η-Gap Generalized CSP(P) for all η > 0 if and only if Basic Sdp solves
(non-generalized) (c, s)-Gap CSP(P).

We remark that the theorem above also holds for slightly subconstant η, say
η = 1/ log log log n. For this choice of η, the quantification of the parameter η in
the theorem statement above is not needed.

4.2 Preliminaries (continued)

In this section, we continue the preliminaries of Section 2 and define basic notions
about Label Cover, smoothness, and SDP rounding.

14Here, we say a cone C ⊆ Rn×n is simple if it is the projection of a cone C′ ⊆ Rn′×n′ with
C
′ = {Y | Y � 0, 〈A1,Y〉 > 0, . . . , 〈Am,Y〉 > 0} and n′ + m 6 poly(n). In particular, the cone C′ can

be described by a small semidefinite program.
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Label-Cover. A Label Cover instanceWwith vertex set V and alphabets [d ·R]
and [R] is specified by a distribution over triples (u, v, π) with u, v ∈ V and
π : [d · R] → [R]. We may assume that the instanceW is left-regular, so that
every vertex u participates in the same number of constraints of the form (u, v, π).
The value of an assignment x ∈ [d · R]V is defined as the probability

W(x) def
= P

(u,v,π),(u′,v′,π′)∼W

{
π(xv) = π′(xv′) | u = u′

}
(It is more common to define the value of W for pairs of assignments x ∈
[d · R]V, y ∈ [R]V as the probability that yu = π(xv) over (u, v, π) ∼ W. For our
purposes, the two definitions are equivalent, but the first one is more convenient.)

Smoothness. We say that a label cover instance as above is σ-smooth if for
every v0 ∈ V and any two labels i, j ∈ [d ·R], the values of a random projection on
V have probability at most σ to coincide on i and j. That is, it is σ smooth if

P
(u,v,π),(u′,v′,π′)∼W

{
π(i) = π′( j) | v = v′ = v0

}
6 σ

It was first shown in [Kho02a] that smooth label cover is NP-hard to approximate.
The following theorem is a simplification of Theorem 3.5 from [GRSW12].

Theorem 4.7. For every constants σ, ε > 0 there exist d,R such that the following holds.
Given an instance of Label Cover over alphabets [d · R] and [R] which is σ smooth, it
is NP-hard to distinguish between the case where the value of the instance is 1 and the
case where its value is at most ε.

(We remark that the theorem remains true with parameters σ and ε slightly
subconstant [MR08].)

Generic Rounding Scheme

Let = be an n-variable instance of CSP(P) for some K-ary boolean predicate P.
Let x be an n-dimensional Gaussian vector, e.g., as part of a feasible solution to
Basic Sdp(=)). For a one-dimensional odd15 rounding function φ : R→ [−1, 1],
we define

=(x, φ) def
= E

x
E

S∼=
P
(
φ (S(x)1) , . . . , φ (S(x)K)

)
.

Since φ is odd, there always exists an integral assignment x′ ∈ {±1}n with value
=(x′) > =(x, φ). (It is equivalent to apply the rounding functions to variables as
opposed to literals.) For an L-dimensional odd rounding functionφ : RL

→ [−1, 1],
we define

=(x, φ) def
= E

X=(x(1),...,x(L))
E

S∼=
P
(
φ (S(X)1) , . . . , φ (S(X)K)

)
.

15Here, odd means φ(−x) = −φ(x).
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Here, x(1), . . . , x(L) are independent samples drawn according to the distribution of
x. We think of X as a L-by-n matrix. Recall that S encodes a K-tuple of literals.
We extend S to matrices in the natural way. If the kth literal in S is the ith variable
with sign σk, we set S(X)k = σk · xi, where xi is the ith column of X.

The idea of generic rounding schemes is to enumerate an ε-net of constant-
dimensional rounding functions and show that for every CSP(P) instance, one
rounding function achieves a value arbitrarily close to the integrality gap of Basic
Sdp for CSP(P).

For every η > 0, there exists a Oη(1)-sized set Nη of Oη(1)-dimensional odd
rounding functions with Lipschitz constant Oη(1) such that the following theorem
holds. (We can assume the rounding functions to be odd because we allow
negations in instances of CSP(P). We will also assume that Nη contains the sign
function for all η > 0.)

Theorem 4.8 ([Rag08], see also [RS09] for a direct proof). Suppose Basic Sdp
achieves a (c, s)-approximation for CSP(P) with 0 < s < c < 1. If = is a CSP(P) instance
and x is a Gaussian vector, that corresponds to a feasible solution for Basic Sdp(=) with
value at least c, then for every η > 0,

rval=,η(x) def
= max

φ∈Nη

=(x, φ) > s − η .

We will refer to rval=,η(x) as the value achieved by the generic rounding
scheme for instance = and SDP solution x at accuracy η. (For this work, the
precise construction of the sets Nη will not be important.)

For our results on Generalized CSPs, we will be interested in Gaussian vectors
that satisfy certain linear equalities and linear inequalities. Adding additional
Gaussian variables p makes it easier to express these linear constraints. In our
setting, the original Gaussian variables x will be linear transforms of the new
variables p, so that x = Tp for a linear map T. Then, we can express =(x, φ) in
terms of p (considering one-dimensional rounding functions φ for simplicity),

=(x, φ) = E
p
E

S∼=
P
(
φ

(
S(Tp)1

)
, . . . , φ

(
S(Tp)K

))
For every S ∈ =, we can combine S and T into a linear map A. We will denote the
resulting collection of the linear maps as =′ and write

=
′(p, φ) = E

p
E

A∼=′
P
(
φ◦(Ap)

)
.

(Here, φ◦( · ) means that we apply φ coordinate-wise.) By construction, =′(p, φ) =
=(x, φ). (Also for multi-dimensional rounding functions.) We will refer to =′ as a
GCSP(P) instance.

Generic Dictatorship Tests for Boolean Predicates

In this section, we recall definitions and results about dictatorship tests, that
we need for our reductions. In particular, we give a formal statement of
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Raghavendra’s result that for every predicate P, there exist dictatorship tests
using P with guarantees arbitrarily close to the integrality gap of Basic Sdp for
CSP(P).

Let P : {±1}K → {0, 1} be a K-ary Boolean predicate and let D be a mixtures
of distributions D over {±1}K. (Formally, we think of D as a distribution over
distributions). The mixtureD specifies a family of dictatorship test gadgets.

Definition 4.9 (Dictatorship test gadget). For a mixtureD of distributions D over
{±1}K, the R-dimensional dictatorship test gadget =D for CSP(P) is an instance of
CSP(P) with variable set [K] × {±1}R (K disjoint copies of {±1}R). An assignment
F = ( f (1), . . . , f (K)) with f (k) : {±1}R → {±1} has the following value for =D,

=D(F) = E
D∼D

E
DR

P( f (1)(x(1)), . . . , f (K)(x(K))) .

(Here, we think of DR as a distribution over matrices X = (x(1), . . . , x(K)) with
columns x(k)

∈ {±1}R and each row drawn independently from D.) We extend =D
to assignments with range [−1, 1] in a multilinear way.

To avoid dealing with negations or multiple predicates, we will only consider
symmetric assignments F = ( f (1), . . . , f (K)) so that f (k)(−x) = − f (k)(x). It is a standard
argument that this assumption is without loss of generality. (For example, one
can think of [K] × {±1}R as the set of literals and [K] × {±1}R−1 as the set of free
variables.)

For a probability space Ω over {±1} and a function f : ΩR
→ R, let InfΩ,r f

denote the ε-noisy influence of coordinate r on f ,

InfΩ,ε,r f def
= E

x−r∼Ω[R]\{r}
Var
xr∼Ω

TΩ,ε f (x)

Here, TΩ,ε is the ε-noise operator for functions on ΩR, so that TΩ,ε f (x) is the
expected value of f (y) with y obtained from x by resampling every coordinate
from Ω with probability ε.

For a tuple of functions F = ( f (1), . . . , f (K)) with f (k) : RR
→ R, we define the

ε-noisy influence of coordinate r with respect to the mixtureD,

InfD,ε,r F def
= E

D∼D

∑
k∈[K]

InfDk,ε,r f (k) .

Here, Dk denotes the marginal of the kth coordinate in the distribution D over
{±1}K. We say that F is ε-quasirandom if InfD,ε,r F 6 ε for all r ∈ [R]. (Typically,
quasirandomness is defined differently, separating the noise parameter and the
influence parameter. However, this definition is qualitatively equivalent to our,
because influences decrease monotonically with noise.)

Definition 4.10. We say thatD has quasirandom soundness s if there exists ε > 0
such that =D(F) 6 s for all ε-quasirandom assignments F = ( f , . . . , f ) with
f : {±1}R → [−1, 1] (and all R ∈N).

(With our definition, the set of all values s ∈ (0, 1) such thatD has quasirandom
soundness s forms an open interval.)
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A (c, s) dictatorship test. We say that the mixtureD is a (c, s)-dictatorship test
distribution if ED P > c and if it has quasirandom soundness s. The parameter
c indeed corresponds to the completeness of the associated dictatorship tests,
because for every R ∈ N and every dictator χ{r}, the CSP(P) instance =D has
value at least =D(χ{r}, . . . , χ{r}) = ED P > c.

The following theorem is a special case of the main ingredient in Raghaven-
dra’s Theorem.16 (The general version of the theorem applies also to (collections
of) predicates over larger alphabets.)

Theorem 4.11 ([Rag08]). For every Boolean predicate P : {±1}K → {0, 1} and every
c, s ∈ R with 0 < s < c < 1, either Basic Sdp achieves a (c, s)-approximation for CSP(P)
or there exists a (c, s)-dictatorship test distribution for P.

4.3 Generalized Max Cut

In this section, we describe our reduction from Label Cover to Generalized Max
Cut. We show completeness and soundness of the reductions. At the end of the
section, we use the reduction to prove Theorem 4.2.

Let P : {±1}2 → {0, 1} be the Max Cut predicate, so that P(x, y) = 1 if and
only if x , y. (We consider here the variant of Max Cut with negations. This
problem is sometimes called XOR games.) The multilinear extension of P is
P(x, y) = (1 − xy)/2.

Let D be a distribution over {±1}2 with mean 0. (We will use this distribution
as a dictatorship test distribution. For the parameter range of Max Cutwhich we
are interested at the moment, such a distribution (as opposed to a mixture) can
achieve optimal dictatorship testing parameters [KKMO04, MOO05].)

Let W be a Label Cover instance with vertex set V and alphabets [d · R]
and [R]. Let =D be the dictatorship test gadget on {±1}R∪̇{±1}R corresponding
to the test distribution D (see Definition 4.9). The composition ofW and =D is
a Generalized Max Cut instance =W,D over RV×[d·R]. For a Gaussian vector p
over RV×[d·R] and a rounding function φ : R→ [−1, 1] (e.g., φ = sign), the value
of =W,D is defined as

=W,D(p, φ) def
= E

p
E
u

E
(v,π),(v′,π′)∼W|u

=D(φ ◦ (Hv,πp), φ ◦ (Hv′,π′p)) .

Here, Hv,π with v ∈ V and π : [d · R]→ [R] is a linear map from RV×[d·R] to the set
of functions f : {±1}R → R,

Hv,π(p) :=
∑

i∈[d·R]

pv,iχ{π(i)} .

16 Raghavendra’s Theorem is usually stated with allowing an arbitrarily small slack ε > 0
between the parameters for the Basic Sdp and the dictatorship test. We can argue that it is not
necessary to allow this slack explicitly. If Basic Sdp does not achieve a (c, s)-approximation for
CSP(P), there exists some ε > 0 such that it also does not achieve a (c + ε, s − ε)-approximation.
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Completeness. Suppose there exists an assignment x ∈ [d · R]V satisfying all
constraints of W. (Hence, there exists y ∈ [R]V such that yu = π(xv) for all
(u, v, π) ∈ W.) Let p ∈ RV×[d·R] be the {0, 1}-indicator of this assignment, so that
pv,i = 1 if xv = i and pv,i = 0 otherwise. Then, Hv,πp = χπ(xv) and

=W,D(p, id) = E
u∈V
=D(χ{yu}, χ{yu}) = E

D
P .

(Since we defined =W,D only for Gaussian vectors, we can think here of p as a
constant Gaussian vector.)

Soundness. Suppose p is a Gaussian vector over RV×[d·R] with Ep ppT > 0 and
Ep(Hv,πp(y))2 = 1 for all y ∈ {±1}R. (The latter is the normalization condition for
generalized Max Cut.)

Since =D is block-multilinear (with respect to the two copies of {±1}R),

=W,D(p, φ) = E
p
E
u
=D( fu, fu) ,

where fu = E(v,π)∼W|u φ ◦ (Hv,πp).
Suppose that D has quasirandom soundness s so that =D( f , f ) 6 s for all ε1-

quasirandom functions f : {±1}R → [−1, 1]. Also suppose thatW(p, φ) > s+ε2 for
some 1/ε3-Lipschitz odd rounding function φ : R→ [−1, 1]. (The sign function is
not Lipschitz, but we can approximate it by such functions without significant
change of the objective value, see Section 4.8.) Let ε be the minimum of {ε1, ε2, ε3}.

If f is not ε-quasirandom, then
∑

r(Infr f )2 > ε2. Hence, =W,D(p, φ) > s + ε
together with the quasirandom soundness of D implies

ε3 6 E
p
E
u

∑
r

(Infr fu)2 6 O(1/ε2)E
p
E
u

∑
r

(
E(v,π)∼W|u Infr Hv,πp

)2
.

(The last step uses convexity of influences and the fact that φ is 1/ε-Lipschitz.)
In case the smoothness σ of W satisfies σ = o(ε5), Theorem 4.15 (influence
decoding from smoothly folded functions) allows us to conclude that there exists
an assignment forW with value poly(ε).

Since for all η > 0 it is NP-hard to distinguish between the case that a label
cover instanceW has value 1 and the case that it has value and smoothness at
most η, we showed the following theorem.

Theorem 4.12. If there exists a (c, s)-dictatorship test distribution for Max Cut, then
(c, s + ε)-Gap Generalized Max Cut is NP-hard for all ε > 0.

Proof of Theorem 4.2. Let c, s ∈ R with 0 < s < c < 1 and c > 0.845. If GW
rounding achieves a (c, s)-approximation, it is clear that Basic Sdp solves (c, s)-Gap
Generalized Max Cut. On the other hand, if GW rounding algorithm does not
achieve a (c, s)-approximation for Max Cut, then the Basic Sdp relaxation for Max
Cut does not achieve a (c, s)-approximation. (Here, we use that GW rounding is
optimal in our range of c.) In this case, there exists ε > 0 such that Basic Sdp also
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does not achieve a (c, s− ε)-approximation for Max Cut. Hence, by Theorem 4.11,
there exists a (c, s − ε)-dictatorship test distribution for Max Cut. By the above
theorem, we conclude that (c, (s − ε) + ε)-Gap Generalized Max Cut is NP-hard,
as desired. �

4.4 Generalized Distribution Matching

In this section, we describe our reduction from Label Cover to Generalized
distribution matching (Problem 4.3). We show completeness and soundness
of the reductions. At the end of the section, we use the reduction to prove
Theorem 4.4.

The reduction has the same flavor as the reduction for Generalized Max Cut.
One difference is that we can avoid rounding functions.

Let D be a pairwise uniform distribution over {±1}K. Let Q be a K-variate
normalized multilinear polynomial. (We don’t assume that Q is a predicate, i.e.,
its range over {±1}K is not necessarily {0, 1}. We extend our notations for K-ary
predicates to K-variate polynomials in the natural way.)

LetW be a Label Cover instance with vertex set V and alphabets [d · R] and
[R]. Let =D,Q denote the dictatorship test gadget over [K] × {0, 1}R for CSP(Q)
corresponding to the test distribution D, see Definition 4.9. (In this section, we
will be interested in the behavior of =D,Q for all polynomials Q as above.) Let
=W,D,Q be the composition ofW and =D,Q, a generalized CSP(Q) instance over
RV×[d·R]. For a Gaussian vector p over RV×[d·R], define its value as

=W,D,Q(p) def
= E

p
E

u∈V
E

(v(1),π(1)),...(v(K),π(K))∼W|u
=D,Q(Hv(1),π(1)p, . . . ,Hv(K),π(K)p) .

As in the previous section, Hv,π with v ∈ V andπ : [d·R]→ [R] is a linear map from
RV×[d·R] to the set of functions f : {±1}R → R with Hv,π(p) :=

∑
i∈[d·R] pv,iχ{π(i)} .

Since =D,Q is block-multilinear (across the K copies of {±1}R), the expression
for =W,D,Q(p) simplifies to

=W,D,Q(p) = E
p
E
u
=D,Q( fu, . . . , fu) ,

where fu = E(v,π)∼W|u Hv,πp.

Completeness. If there exists a satisfying assignment x ∈ [d · R]V forW, then
for the {0, 1}-indicator p ∈ RV×[d·R] of x,

=W,D,Q(p) = E
D

Q .

Since this identity holds for all Q, the promise of the YES case for Problem 4.3
(Generalized D-distribution Matching) is satisfied.
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Soundness. Let p be a Gaussian vector p with Ep ppT > 0 and Ep(Hv,πp(y))2 6 1
for all y ∈ {±1}R. (The latter corresponds up to poly(K) factors to the normalization
condition of Problem 4.3.) The invariance principle (in particular, the version in
Theorem 4.18) implies

=W,D,Q(p) 6 OK(1) · E
p
E
u

(
∑

r
(Infr fu)2)1/4

· (1 + ‖ fu‖ + . . . ‖ fu‖K) .

(Recall that the fu’s are linear functions on {±1}R.) By Theorem 4.15, the ex-
pectation of

∑
r(Infr fu)2 is at most opt(W)Ω(1) (assuming sufficient smooth-

ness of W). Hence, by Cauchy–Schwarz, =W,D,Q(p) 6 OK(1) · opt(W)Ω(1)
·

(EpEu
∑K−1

k=0 ‖ fu‖4k)1/4. Using estimates on Gaussian moments, we can bound also
the last factor by OK(1). We conclude that ifW has optimal value and smoothness
o(1), then =W,D,Q satisfies the promise of the NO case of Problem 4.3 for all
normalized multilinear polynomials Q.

Together with known NP-hardness results for Label Cover [MR08], our re-
ductions shows the following hardness for Generalized D-distribution matching.

Theorem 4.13. If D is pairwise uniform, then Generalized D-distribution matching is
NP-hard.

Proof of Theorem 4.4. If D is not pairwise uniform, there exists ε > 0 and a
quadratic polynomial P such that ED P = ε. The Basic Sdp finds a Gaussian x
vector such that the first two moments of D and the distribution {Ax}A←R= match.
Hence, it follows that Ex P(Ax) = ε, contradicting the NO promise.

On the other hand, if D is pairwise uniform, then the theorem above shows
that the problem is NP-hard. �

4.5 Generalized CSPs

In this section, we describe our reduction from Label Cover to Generalized CSPs
(Problem 4.3). We show completeness and soundness of the reductions. At the
end of the section, we use the reduction to prove Theorem 4.6.

Again the flavor of the reduction is similar to the one for Generalized MaxCut.
The main difference is that we have to deal with multi-dimensional rounding
functions and more general dictatorship distributions.

Let P : {±1}K → {0, 1} be a K-ary Boolean predicate. Let D be a mixture of
distributions D over {±1}. (This mixture will serve for our dictatorship gadget.)

Let W be a Label Cover instance with vertex set V and alphabets [d · R]
and [R]. Let =D denote the dictatorship test gadget over [K] × {0, 1}R for CSP(P)
corresponding to the mixtureD (see Definition 4.9). Let=W,D be the composition
of W and =D,Q, a generalized CSP(P) instance over RV×[d·R]. For a Gaussian
vector p over RV×[d·R] and an L-dimensional rounding function φ : RL

→ [−1, 1],
define its value as

=W,D(p, φ) def
= E

p
E

u∈V
E

(v(1),π(K)),...(v(K),π(K))∼W|u
=D(φ ◦ (Hv(1),π(1)p), . . . , φ ◦ (Hv(K),π(K)p)) .
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Here, p denotes a L-by-V × [d · R] Gaussian matrix, each row independently
drawn from the distribution of the Gaussian vector p. As in the previous section
Hv,π, with v ∈ V and π : [d · R] → [R], takes a vector in RV×[d·R] and defines a
corresponding function f : {±1}R → R with Hv,πp :=

∑
i∈[d·R] pv,iχ{π(i)} . We extend

Hv,π to matrices, so that Hv,πp : : {±1}R → RL is the vector-valued function∑
i∈[d·R] pv,i · χ{π(i)}. After composition with a rounding function, φ ◦ (Hv,πp) is a

function on {±1}R with range [−1, 1].
Since =D is block-multilinear (across the K copies of {±1}R), the expression

for =W,D,Q(p) simplifies to

=W,D(p) = E
p
E
u
=D( fu, . . . , fu) ,

where fu = E(v,π)∼W|u φ ◦ (Hv,πp).

Completeness. If p is the {0, 1}-indicator of a satisfying assignment for W
(which we can think of as a constant Gaussian vector), then =W,D(p, φ) = ED P
for any rounding function φ with φ(1, . . . , 1) = 1 and φ(−1, . . . ,−1) = −1. Hence,
=W,D satisfies the YES promise of Problem 4.5 ((c, s)-Gap Generalized CSP(P))
with c = ED P.

Soundness. Suppose p is a Gaussian vector over RV×[d·R] with Ep ppT > 0 and
Ep(Hv,pp(y))2 = 1 for all y ∈ {±1}R. (The latter corresponds to the normalization
condition for solutions to Basic Sdp(=W,D).

Suppose thatD has quasirandom soundness s so that =D( f , . . . , f ) 6 s for all
ε1-quasirandom functions f : {±1}R → [−1, 1] and that =W,D(p, φ) > s + ε2 for an
odd L-dimensional rounding function φ with Lipschitz constant 1/ε3. Let ε be
the minimum of {ε1, ε2, ε3}. Using similar arguments as for Generalized Max Cut,
it follows that

E
p
E
u

∑
r

(
E(v,π)∼W|u InfD,r Hv,πp

)2
> (ε/LK)O(1) .

Since Hv,πp is linear, it is easy to verify that InfD,r Hv,πp 6 K · Infr Hv,πp. (The latter
influence is with respect to the usual uniform distribution on {±1}.)

Using Theorem 4.15 (influence decoding for smoothly folded functions), we
can conclude that ifW has optimal value and smoothness (ε/LK)O(1), then =W,D

satisfies the NO promise of Problem 4.5 (with soundness s + η + ε).
We can conclude the following theorem.

Theorem 4.14. If there exists a (c, s)-dictatorship test for CSP(P), then (c, s+η+ε)η-Gap
Generalized CSP(P) is NP-hard for all ε, η > 0.

Proof of Theorem 4.6. Let c, s ∈ R with 0 < c < s < 1. If Basic Sdp achieves a
(c, s)-approximation for CSP(P), Theorem 4.8 implies that Basic Sdp also solves
(c, s)η-Gap Generalized CSP(P).
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Otherwise, if Basic Sdp does not achieve a (c, s)-approximation for CSP(P), it
does also not achieve a (c, s − ε0)-approximation for some ε0 > 0. Theorem 4.11
implies that there exists a (c, s−ε0)-dictatorship test distribution for CSP(P). Then,
the above theorem shows that for all η < ε0, the problem (c, s)η-Gap Generalized
CSP(P) is NP-hard. �

4.6 Influence Decoding from Smoothly Folded Functions

Let V be a set of vertices and let [d · R] and [R] be alphabets. For v ∈ V and
π : [d · R] → [R], let Hv,π be the linear map from RV×[d·R] to the set of functions
f : {±1}R → R,

Hv,πp :=
∑

i∈[d·R]

pv,i · χ{π(i)} .

Theorem 4.15. LetW be a label cover instance with vertex set V, alphabets [d · R]
and [R], and smoothness σ. Let p be a Gaussian vector over RV×[d·R] with Ep ppT > 0.
Assume that Ep(Hv,πp(y))2 6 1 for all y ∈ {±1}R and pairs (v, π) that appear inW.
(This assumption corresponds to the normalization condition for the assignment p.)

Suppose ε = EpEu∈V
∑

r∈[R](E(v,π)∼W|u Infr Hv,πp)2 and σ� ε. Then, there exists
an assignment forW with value poly(ε).

Proof. We write p = p′+p′′with p′v,i = pv,i if ‖pv,i‖
2 > η and p′v,i = 0 otherwise. (The

parameter η is determined later.) Our strategy is to show that the contribution of
p′′ to ε is negligible. The random vector p′ turns out to be sparse, which makes it
easy to decode an assignment forW from it.

Let Pπ : Rd·R
→ RR be as in Section 4.7. Then,

ε = E
p
E
u

∑
r

(
E(v,π)|u(Pπpv)2

r

)2

6 O(1) · E
p
E
u

∑
r

(
E(v,π)|u(Pπp′v)2

r

)2
+ O(1) · E

p
E

(u,v,π)

∑
r

(Pπp′′v )4
r .

(In the last step, we use triangle inequality to separate the contributions of p and
p′′, and we bound the term for p′′ using convexity.) Using Lemma 4.16, we can
bound the expectation of the term

∑
r(Pπp′′v )4

r (setting a = p′′v and b = Pπp′′v in the
notation of the lemma),

E
p
E

(u,v,π)

∑
r

(Pπp′′v )4
r 6 O(1) · E

v

∑
i‖p
′′

v,i‖
4 + O(σ) · E

v
‖
∑

i p′′v,i‖
4 .

By construction, ‖p′′v,i‖
2 6 η for all v ∈ V and i ∈ [d · R]. Since Ep ppT > 0 (and thus

Ep(p′′)(p′′)T > 0), we have
∑

i‖p′′v,i‖
2 6 ‖

∑
i p′′v,i‖ 6 ‖

∑
i pv,i‖ for all v ∈ V. Using the

assumption Ep(Hv,πp(y))2 6 1 for all y ∈ {±1}R (and again Ep ppT > 0), we can
bound ‖

∑
i pv,i‖ 6 1. Hence, we can bound the total contribution of p′′ by

E
p
E

(u,v,π)

∑
r

(Pπp′′v )4
r 6 O(η + σ) .
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It follows that the contribution of p′ is at least ε′ := EpEu
∑

r(E(v,π)|u(Pπp′v)2
r )2 >

Ω(ε)−O(η+σ). Consider the assignment x ∈ [d ·R]V forW obtained by assigning
xv = i with probability at least ‖pv,i‖

2 independently for every v ∈ V. (Since∑
i‖pv,i‖

2 6 1 for all v ∈ V, such a distribution over assignments x exists.) The
expected value of this assignment forW is at least

E
x
W(x) > E

u

∑
r

 E(v,π)|u

∑
r∈π−1(r)

‖pv,i‖
2

2

Our goal is to upper bound the contribution of p′ in terms of this expected value
of x,

ε′ = E
p
E
u

∑
r

(E(v,π)|u(Pπp′v)2
r )2

6 O(1) · E
u

∑
r

(
E(v,π)|u

∥∥∥∑i∈π−1(r) p′v,i
∥∥∥2

)2
(∗)

6 O(1/η2) · E
u

∑
r

(
E(v,π)|u

∑
i∈π−1(r)‖p

′

v,i‖
2
)2

(∗∗)

6 O(1/η2)E
x
W(x) .

Step (∗) uses that {Pv,πpv} are jointly Gaussian and thus Ep(Pv,πpv)2
r (Pv′,π′pv′)2

r 6
O(1) ·Ep(Pv,πpv)2

r ·Ep(Pv′,π′pv′)2
r . Step (∗∗) uses that every random vector p′v has at

most 1/η coordinates that are not identically zero and therefore, ‖
∑

i∈π−1(r) p′v,i‖
2 6

1/η ·
∑

i∈π−1(r)‖p′v,i‖
2.

We conclude that there exists an assignment forWwith value at least Ω(η2
·ε′).

(Recall ε′ = Ω(ε) −O(η + σ).) Since we assumed σ� ε, we can choose η = Ω(ε)
such that ε′ = Ω(ε). Hence,W has optimal value at least Ω(ε3). �

4.7 Smooth Distributions over Functions

For d,R ∈N, consider the alphabets Σ = [R] and Σ′ = [d · R]. LetD be a σ-smooth
distribution over functions π : Σ′ → Σ, that is, for all i, j ∈ Σ′, the probability of
collision is at most Pπ∼D

{
π(i) = π( j)

}
6 σ.

For a function π : Σ′ → Σ, we define Hπ to be the linear operator that maps
a vector a ∈ RΣ′ to the functional Hπa =

∑
i∈Σ′ aiyπ(i). Similarly, for a function

π : Σ′ → Σ, let Pπ : RΣ′
→ RΣ be the linear operator with Pπa =

∑
i∈Σ′ aieπ(i), where

e1, . . . , eR is the standard basis of RΣ.

Lemma 4.16. Let a be an Gaussian vector over RΣ′ with Ea aaT > 0. Let b be a
jointly distributed random vector over RΣ obtained by sampling a function π ∼ D and
outputting Pπa. Then,

E
b

∑
r b4

r 6 O(1) ·
∑

i‖ai‖
4 + O(σ) · ‖

∑
i ai‖

4 .

Here, ‖X‖ = (EX2)1/2 denotes the L2-norm of a random variable X.
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Proof. Conditioned on π, each br is a Gaussian variable. Hence, its fourth moment
Eb|π b4

r is proportional to the square of its second moment,

E
b

∑
r

b4
r = O(1) E

π∼D

∑
r∈Σ

∥∥∥∑i∈π−1(r) ai
∥∥∥4

= O(1)
∑

i, j,k,`∈Σ′(Ea aia j)(Ea aka`) · Pπ∼D
{
π(i) = π(i) = π( j) = π(k)

}
6

∑
i∈Σ′‖ai‖

4 + σ ·
∥∥∥∑i∈Σ′ ai

∥∥∥4

The last step uses thatD is σ-smooth and that Ea aaT > 0. �

4.8 Lipschitz Approximation of Sign

In this section, we show that for the purpose of the §4.3 it is possible to approximate
the rounding function sign by a Lipschitz function φ : R → [−1, 1]. For our
approximation, we will use the piece-wise linear function φε(x) := sign(x) for
|x| > ε and φε(x) := x/ε for |x| 6 ε. The function φε is 1/ε-Lipschitz.

For convenience of the reader, we will use similar notation as in §4.3. Let = be
a Max Cut instance with vertex set {±1}R (our dictatorship test gadget). Let f be
Gaussian function on {±1}R (that is, the values { f (x)}x∈{±1}R have a joint Gaussian
distribution). Suppose E f f (x)2 = 1 for all x ∈ {±1}R.

Lemma 4.17.
E
f
=(sign◦ f ) = E

f
=(φε ◦ f ) ±O(

√
ε) .

Proof. Since =(·) is a quadratic form with bounded eigenvalues, it is enough to
show E f ‖sign◦ f − φε ◦ f ‖2 6 O(ε). We can verify by direct calculation,

E
f
‖sign◦ f − φε ◦ f ‖2 = E

x∈{±1}R
E
f
(sign( f (x)) − φε( f (x)))2

6 E
x∈{±1}R

P
f

{
| f (x)| 6 ε

}
= O(ε) .

�

4.9 Pairwise Independence and Invariance Principle

In this section, we state a special case of the invariance principle [MOO05].
Let D be a pairwise uniform distribution on {±1}K. For R ∈N, let ∆D be the

following multilinear form on functions f (1), . . . , f (K) : {±1}R → R,

∆D( f (1), . . . , f (K)) def
= E

DR
f (1)
· · · f (K) .

(Here, we think of DR as a distribution over vectors x(1), . . . , x(K)
∈ {±1}R, each

coordinate drawn independently from D.)

Theorem 4.18 ([MOO05, AM09]). ] Let f : {±1}R → R be a function of degree at most
d and E f = 0. Then,

∆D( f , . . . , f ) 6 OK,d(1) ·max
r

(Infr f )1/2
‖ f ‖K−1 .
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