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Abstract. We show a tight relation between the behavior of unique
games under parallel repetition and their semidefinite value. Let G be a
unique game with alphabet size k. Suppose the semidefinite value of G,
denoted sdp(G), is at least 1− ε. Then, we show that the optimal value
opt(G`) of the `-fold repetition of G is at least 1 − O(

√
`ε log k). This

bound confirms a conjecture of Barak et al. (2008), who showed a lower
bound that was worse by

√
`ε log(1/ε). A consequence of our bound is

the following tight relation between the semidefinite value of G and the
amortized value opt(G) := sup`∈IN opt(G`)1/`,

sdp(G)O(log k) ≤ opt(G) ≤ sdp(G) .

The proof closely follows the approach of Barak et al. (2008). Our technical
contribution is a natural orthogonalization procedure for nonnegative
functions. The procedure has the property that it preserves distances up
to an absolute constant factor. In particular, our orthogonalization avoids
the additive increase in distances caused by the truncation step of Barak
et al. (2008).

1 Introduction

A unique game G with vertex set V and alphabet Σ consists of a list of con-
straints encoded by triples (u, v, π), where u, v ∈ V are vertices and π ∈ SΣ is
a permutation of Σ. An assignment x ∈ ΣV satisfies a constraint (u, v, π) if
xv = π(xu). The (optimal) value of G, denote opt(G), is defined as the maxi-
mum fraction of constraints of G that can be satisfied simultaneously, that is,
opt(G) := maxx∈ΣV P(u,v,π)∼G {xv = π(xu)} . (Here, (u, v, π) ∼ G means that
(u, v, π) is a random constraint of G.)

Khot’s Unique Games Conjecture [9] asserts that it is NP-hard to approximate
the value of a unique game in a certain regime. (According to this conjecture, for
every constant ε > 0, there exists k ∈ IN such that given a unique game G with
alphabet size at most k, it is NP-hard to distinguish the cases opt(G) ≥ 1− ε
and opt(G) ≤ ε.)

A sequence of recent works showed that this conjecture implies (often op-
timal) hardness results for many basic combinatorial optimization problems
[9,11,10,14,12,4,1,15,13,7]. Most strikingly, Raghavendra [15] showed that the
? Supported by NSF Grants CCF-0832797, 0830673, and 0528414.
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Unique Games Conjecture, if true, implies that for every constraint satisfaction
problem, it is NP-hard to achieve a strictly better approximation guarantee than
the one obtained by a simple generic semidefinite programming relaxation.

Due to its potential consequences, the Unique Games Conjecture is one of
the central open questions about approximation algorithms and hardness of
approximation.

In contrast to the numerous implications of a positive resolution, only few
consequence of a refutation of the conjecture are known (some consequence for the
approximability of graph expansion in a certain regime were recently shown [16]).
The most compelling question in this context is whether an algorithm refuting
the Unique Games Conjecture would lead to better approximation algorithms
for Max Cut. (Or equivalently: Would the optimality of current algorithms for
Max Cut, imply the Unique Games Conjecture?)

A natural candidate for such a reduction from Max Cut to Unique Games
(the problem of computing the value of a unique game) is parallel repetition.
(For simplicity, we can identify Max Cut with the problem of computing
the value of a unique game with alphabet size 2.) In general, `-fold parallel
repetition takes a unique game G with vertex V and alphabet Σ and outputs a
unique game, denoted G`, with vertex set V ` and alphabet Σ`. For every `-tuple
(u1, v1, π1), . . . , (u`, v`, π`) of constraints in G, the game G` contains a constraint
(u, v, π), where u = (u1, . . . , u`), v = (v1, . . . , v`), and π is the permutation of Σ`

obtained by applying πi to the ith coordinate. By construction, opt(G`) ≥ opt(G)`.
However, this lower bound is not always tight. Raz [18] showed the first strong
upper bound on the value of parallel-repeated games: If opt(G) = 1 − ε, then
opt(G`) ≤ (1 − εc)Ω(`/s) for some constant c and s = O(log k). Subsequently,
Holenstein [8] simplified this proof and showed an improved parallel repetition
bound with c = 3. Rao [17] further improved this result and showed a parallel
repetition bound with c = 2 and s = O(1). We remark that these bounds also
hold for projection games, where π need not be a permutation but can be an
arbitrary function. (In fact, the bounds of Raz and Holenstein hold in an even
more general setting.)

Feige et al. [5] noted that a parallel repetition bound with c < 2 would imply
a reduction from Max Cut to Unique Games that achieves the goal above
(an algorithm refuting the Unique Games Conjecture would lead to a better
approximation algorithm for Max Cut). Raz [19] ruled out this possibility and
showed that for a simple family of unique games (odd-cycle games) Rao’s parallel
repetition bound is optimal.

A related, more general question is whether parallel repeated games could be
hard instances for Unique Games. Concretely, we could consider the following
strengthening of the Unique Games Conjecture: For every constant ε > 0, there
exists ` ∈ IN such that given a unique game G with alphabet size 2 it is NP-hard
to distinguish the cases opt(G`) ≥ 1− ε and opt(G`) ≤ ε. We remark that the
analogous conjecture for projection games is known to be true (a consequence of
the PCP Theorem and Raz’s parallel repetition bound). Extending the techniques
of Raz’s analysis of odd-cycle games, Barak et al. [2] showed that this variant
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of the Unique Games Conjecture is false (unless P = NP). The authors give a
polynomial time algorithm that given a unique game G with alphabet size 2
and opt(G`) ≥ 1 − ε, computes an assignment for G` of value 1 − O(

√
ε). (In

particular, for every small enough ε > 0, this algorithm can distinguish between
opt(G`) ≥ 1− ε and opt(G`) ≤ ε.)

The algorithm of Barak et al. is based on a semidefinite programming relax-
ation for opt(G). They show that the behavior of opt(G`) is closely characterized
by the optimal value of this semidefinite relaxation, denoted sdp(G). For the
case that G has alphabet size 2, the bound of Barak et al. is tight up to constant
factors. For the case of larger alphabets, the authors show bounds that are tight
up to logarithmic factors. In this work, we improve the analysis of Barak et al.
and show a relation between sdp(G) and the behavior of opt(G`), which is tight
up to constant factors even for larger alphabets.

1.1 Results

Let G be a unique game with alphabet size k. We are interested in the behavior
of the value of G under parallel repetition. Barak et al. [2] show that if the
semidefinite value of G is at least 1− ε, then the optimal value of G` is at least
1−O(

√
s`ε), where s = log k+ log(1/ε). It was conjectured that the log(1/ε) term

in this bound is not necessary. (The log k term is known to be necessary.) We
confirm this conjecture and show the following lower bound on opt(G`) in terms
of sdp(G).

Theorem 1. For every unique game G with alphabet size k and sdp(G) ≥ 1− ε,

opt(G`) ≥ 1−O(
√
`ε log k) .

As a consequence of this theorem and results of Feige and Lovász [6] and Charikar,
Makarychev, and Makarychev [3], we obtain the following tight relation between
the amortized value opt(G) := sup`∈IN opt(G`)1/` and the semidefinite value of
G. (See Section A.1 for a proof of this theorem.)

Theorem 2. For every unique game G with alphabet size k,

sdp(G)O(log k) ≤ opt(G) ≤ sdp(G) .

(We remark that for every k ∈ IN, there exist unique games G that achieve
the above lower bound on opt(G). See [2] for details.) The approach of [2] for
proving lower bounds on the value of repeated games G` involves an interme-
diate relaxation, denoted here sdp+(G), which is “sandwiched” between opt(G)
and sdp(G). (This approach is also implicit in Raz’s counterexample to strong
parallel repetition [19].) Using Holenstein’s correlated sampling technique [8], it
is straightforward to derive lower bounds on opt(G`) in terms of sdp+(G) (see
Section 2.2 for the definition of sdp+(G) and [2] for more discussion about the
correlated sampling technique).
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The key result in [2] is a lower bound on sdp+(G) in terms of the semidefinite
value of G. We prove the following improved bound (which is optimal up to the
constants hidden in the O(·)-notation).

Theorem 3. For every unique G with alphabet size k and sdp(G) ≥ 1− ε,

sdp+(G) ≥ 1−O(ε log k) .

Assuming this theorem and some properties of the intermediate relax-
ation sdp+(G) (which are presented in Section 2.2), we can prove Theorem 1.

Proof (Theorem 1). Let G be a unique game with alphabet size k and sdp(G) ≥
1−ε. Theorem 3 shows that sdp+(G) ≥ 1−O(ε log k). The intermediate relaxation
satisfies sdp+(G`) ≥ sdp+(G)` (Lemma 9). Hence, sdp+(G`) ≥ 1−O(`ε log k). On
the other hand, Theorem 8 implies that opt(G`) ≥ 1−O(√η) if sdp+(G`) ≥ 1−η.
Thus, we can conclude that opt(G`) ≥ 1−O(

√
`ε log k).

In the next section (Section 1.2), we give a sketch of the proof of Theorem 3
and compare it to the proof of the previous bounds by [2]. We present a detailed
proof of Theorem 3 in Section 3.

We record another consequence of Theorem 3, which shows that the semidef-
inite value of parallel repeated unique games is a good approximation of the
optimal value (assuming that the alphabet size of the underlying unique game is
not too large). (We omit the proof.)

Theorem 4. Let H = G` be a parallel repetition of a unique game G with
alphabet size k. Suppose sdp(H) ≥ 1− ε. Then, opt(H) ≥ 1−O(

√
ε log k).

We remark that [3] show the same bound with k being replaced by the
alphabet size of H. In our setting, H has alphabet size k`. (The bound of [3] is
for general unique games H and does not assume that H is obtained by parallel
repetition.) For ` = 1, the two bounds agree. For more repetitions, our bound
is strictly stronger. In this sense, parallel repeated unique games are easier to
approximate than general unique games.

1.2 Proof Overview and Techniques

Our proof of Theorem 3 closely follows the approach of [2]. It is illustrative to
start with an outline of this approach. (This discussion assumes that the reader is
somewhat familiar with unique games and the relaxation sdp(G). See Section 2.1
and Section 2.2 for formal definitions.) Let G be a unique game with vertex set
V = [n] and alphabet Σ = [k]. The unique game G is represented as a list of
triples (u, v, π), where u, v ∈ V and π is a permutation of Σ. The triple (u, v, π)
encodes the constraint that the labels of u and v satisfy the relation π. In other
words, an assignment L ∈ ΣV satisfies the constraint (u, v, π) if Lv = π(Lu).

In the relaxation sdp(G), we consider vector-valued assignments instead of
the usual assignments. More precisely, we assign orthogonal vectors u1, . . . ,uk
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to every vertex u ∈ V . The vectors are normalized such that
∑
i‖ui‖2 = 1 for

every u ∈ V . Such a vector-valued assignment satisfies a constraint (u, v, π) if ui
is close to vπ(i) for most labels i ∈ Σ. Formally, the violation of the constraint
(u, v, π) is measured by

∑
i‖ui − vπ(i)‖2.

To prove Theorem 3, we need to transform an optimal solution for sdp(G) to
a good solution for sdp+(G). As the notation suggests, the relaxation sdp+(G)
is quite similar to sdp(G). Instead of assigning arbitrary orthogonal vectors to a
vertex u ∈ V , we ask for orthogonal vectors with only nonnegative coordinates.
Note that nonnegative vectors are orthogonal only if they are supported on
disjoint sets of coordinates. It is notationally more convenient to talk about
nonnegative functions instead of vectors with only nonnegative coordinates.

To summarize, the relaxation sdp+(G) asks us to assign nonnegative functions
fu,1, . . . , fu,k with disjoint supports to every vertex u ∈ V . As before, the functions
are normalized such that

∑
i‖fu,i‖2 = 1 for every u ∈ V , and the violation of a

constraint (u, v, π) is measured by
∑
i‖fu,i − fv,π(i)‖2.

Let {ui}u∈V,i∈Σ ⊆ IRd be an optimal solution for sdp(G). To avoid some
technical details, let us assume that all vectors have the same length so that
‖ui‖2 = 1/k for every u ∈ V and i ∈ Σ. To construct a solution for sdp+(G),
Barak et al. consider the distributions N(ūi, σ2I) on IRd. (Here, N(ūi, σ2I)
denotes the standard d-dimensional Gaussian distribution centered at the unit
vector in direction ui, with standard deviation σ in each coordinate.) A tentative
solution for sdp+(G) is constructed by letting fu,i be the square root of the
density function of N(ui, σ2I) (suitably normalized). It turns out that the new
violations

∑
i‖fu,i−fv,π(i)‖2 exceed the original violations

∑
i‖ui−vπ(i)‖2 by at

most a factor O(σ−2). However, the supports of the functions fu,1, . . . , fu,k are
far from disjoint (in fact, all of them have the same support, namely IRd). Hence,
the idea is to massage the functions such that their supports become disjoint.
The approach taken by Barak et al. is to restrict fu,i to the Voronoi cell of the
vector ui (the set of points of IRd that are closer to ui than to any other vector
uj). Since the vectors u1, . . . ,uk are pairwise orthogonal, only a small portion of
the L2-mass of fu,i is outside of the Voronoi cell of ui. Concretely, if f ′u,i is the
restriction of fu,i to the Voronoi cell of ui, the truncated L2-mass is bounded by∑
i‖fu,i − f ′u,i‖2 ≤ ke−Ω(1/σ2). By choosing σ appropriately, we can balance the

additional violation due to this truncation and the initial multiplicative increase
of the violations. The reason why this approach falls short of proving Theorem 3
is that the truncation causes an additive increase in the violations, whereas for
Theorem 3 we can only afford a multiplicative increase of the violation. (We
remark that this additive increase is not an artifact of the analysis but a property
of the construction.)

Our contribution is a construction that avoids this additive increase of the
violations. We refer to this construction as smooth orthogonalization for non-
negative functions. We construct the functions f ′u,i in the following way: As
before, f ′u,i is identically 0 outside of the Voronoi cell of ui. Inside the Voronoi
cell of ui, we define f ′u,i(x) = fu,i(x) − fu,j(x), where j is the label of the
vector uj that is second-smallest distance to x. (In other words, we consider a
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refinement of the Voronoi partition according to second nearest neighbors.) With
this construction, we can write f ′u,i(x) as a piecewise-linear function of the values
fu,1(x), . . . , fu,k(x), i.e.,

f ′u,i(x) = max
{
fu,i(x)− fu,1(x), . . . , fu,i(x)− fu,k(x)

}
.

Since such piecewise-linear functions are Lipschitz, it follows that there ex-
ists a number L such that

∑
i‖f ′u,i − f ′v,π(i)‖

2 ≤ L
∑
i‖fu,i − fv,π(i)‖2 for all

u, v ∈ V and permutations π of Σ. It follows that this construction causes
only a multiplicative increase of the violations. The remaining problem is to
bound the Lipschitz constant L. A priori, L could grow with k. In our case,
the Lipschitz constant L is bounded by an absolute constant independent
of k. The reason is roughly that at every point x ∈ IRd, at most four of
the values fu,1(x), . . . , fu,k(x), fv,1(x), . . . , fv,k(x) contribute to the distance∑
i‖f ′u,i − f ′v,π(i)‖

2. See Section 3.1 for details.

2 Preliminaries

2.1 Unique Games and Parallel Repetition

Let V and Σ be two (finite) sets. A unique game G with vertex set V and alphabet
Σ is defined by a distribution over triples (u, v, π), where u, v ∈ V are vertices
and π : Σ → Σ is a permutation of the alphabet Σ. We refer to the `-fold product
distribution G` as the `-fold repetition of G. Note that G` is a unique game with
vertex set V ` and alphabet Σ`.

The (optimal) value of G is defined by

opt(G) def= max
L∈ΣV

P
(u,v,π)∼G

{
Lv = π(Lu)

}
. (2.1)

The amortized value of G is defined by

opt(G) def= sup
`∈IN

opt(G`)1/` . (2.2)

Theorem 5 ([17]). If G is a unique game with opt(G) ≤ 1− η, then opt(G) ≤
1−Ω(η2).

2.2 Semidefinite and Nonnegative Relaxation

The semidefinite value of a unique game G with vertex set V and alphabet Σ is
defined by

sdp(G) def= max E
(u,v,π)∼G

∑
i∈Σ〈ui,vπ(i)〉 , (2.3)

where we maximize over all collections {ui}u∈V,i∈Σ of vectors that satisfy∑
i∈Σ
‖ui‖2 = 1 (u ∈ V ) , (2.4)

〈ui,uj〉 = 0 (u ∈ V, i 6= j ∈ Σ) . (2.5)
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The optimization problem sdp(G) is a relaxation of opt(G). Hence, sdp(G) ≥
opt(G) for every unique game G.

Theorem 6 ([3]). Suppose G is a unique game with alphabet size k and
sdp(G) ≥ 1− ε. Then, opt(G) ≥ 1−O(

√
ε log k) .

Theorem 7 ([6]). For every unique game G and number ` ∈ IN, we have
sdp(G`) = sdp(G)` .

Theorem 7 implies that sdp(G) ≥ opt(G), i.e., sdp(G) is also a relaxation
for opt(G). Combining this fact with Theorem 6, we get that opt(G) ≤ 1 −
Ω(η2/ log k) if G is a unique game with alphabet size k and opt(G) ≤ 1−η. Note
that Theorem 5 shows that the log k factor in this bound is not necessary.

The Hellinger1 value of G is defined as

sdp+(G) def= max E
(u,v,π)∼G

∑
i∈Σ〈fu,i, fv,π(i)〉 , (2.6)

where we maximize over all collections {fu,i}u∈V,i∈Σ of nonnegative functions on
Ω such that ∑

i∈Σ
‖fu,i‖2 = 1 (u ∈ V ) , (2.7)

supp(fu,i) ∩ supp(fu,j) = ∅ (u ∈ V, i 6= j ∈ Σ) . (2.8)

Here, (Ω,µ) is some probability space and the norms and inner products for
functions f, g : Ω → IR are defined as 〈f, g〉 :=

∫
Ω
fg dµ and ‖f‖ := 〈f, f〉1/2.

Without loss of generality, we could assume Ω = [0, 1] and that µ is the usual
Lebesgue measure.

Notice that (2.8) is equivalent to the constraint that fu,i and fu,j are orthog-
onal for all i 6= j and u ∈ V (at least if Ω is finite and every atom has positive
probability mass). Hence, the optimization problem sdp+(G) is equivalent to
sdp(G) except for the constraint that the value of the functions (coordinates of
the vectors) are nonnegative.

Our result relies on the following theorem of [2].

Theorem 8 ([2]). If G is a unique game with sdp+(G) ≥ 1− ε, then opt(G) ≥
1− 2

√
2ε.

Furthermore, we can lower bound sdp+(G`) in terms of sdp+(G) as expected.
This lemma follows from the fact that we can construct a solution for sdp+(G`)
by taking appropriate tensor products of the functions fu,i that form an optimal
solution for sdp+(G).

Lemma 9. For every unique game G, we have sdp+(G`) ≥ sdp+(G)`.
1 The relaxation sdp+(G) has an alternative description in terms minimizing squared

Hellinger distances of jointly distributed random variables subject to a certain set
of constraints (called distributional strategies in [2]). See [2] for details about this
alternative description. The two formulations of sdp+(G) are equivalent.
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2.3 Mapping Vectors to Nonnegative Functions

Let N(0, σ2)d be the Gaussian measure on IRd with mean 0 and covariance σ2I
(each coordinate is independent Gaussian with mean 0 and standard deviation σ).
Let φσ : IRd → IR+ be the density of the measure N(0, σ2)d with respect to the
usual Lebesgue measure λd on IRd,

φσ(x) def= 1
(σ√2π)d e

−‖x‖2/2σ2
.

Let L2(IRd) be the (Hilbert) space of functions f : IRd → IR such that
∫

IRd f2 dλd

is bounded. The inner product in L2(IRd) is given 〈f, g〉 =
∫
fg dλd.

Let Tu be the translation operator on L2(IRd), so that Tuf(x) = f(x− u).
Barak et al. [2] consider the following mapping Mσ from IRd to nonnegative
functions in L2(IRd),

Mσ(u) def= ‖u‖
√
Tūφσ . (2.9)

Here, ū denotes the unit vector in the direction of u. The mapping Mσ preserves
norms, that is, ‖Mσ(u)‖ = ‖u‖ for every vector u ∈ IRn. We need the following
additional properties of Mσ. (See Section A.2 for a proof of this lemma.)
Lemma 10 ([2]). For any two vectors u,v ∈ IRd,

‖Mσ(u)−Mσ(v)‖2 ≤ O(σ−2) · ‖u− v‖2 .

Furthermore, 〈Mσ(u),Mσ(v)〉 = ‖u‖ ‖v‖ · e−1/4σ2 if u and v are orthogonal.

3 Improved Rounding of Repeated Unique Games

In this section, we will prove the following theorem — our main result.

Theorem (Restatement of Theorem 3). For every unique G with alphabet
size k and sdp(G) ≥ 1− ε,

sdp+(G) ≥ 1−O(ε log k) .

The key ingredients of the proof of Theorem 3 are the mapping Mσ from
vectors to nonnegative functions (Section 2.3) and the following smooth orthogo-
nalization procedure for nonnegative functions (or vectors).

Lemma 11 (Smooth Nonnegative Orthogonalization). There exists a
mapping Q : L2(IRd)k → L2(IRd)k with the following properties: Let f1, . . . , fk
and g1, . . . , gk be nonnegative functions in L2(IRd) such that

∑
i‖fi‖2 =∑

i‖gi‖2 = 1 and
∑
i 6=j〈fi, fj〉 +

∑
i 6=j〈gi, gj〉 ≤ γ. Suppose (f ′1, . . . , f ′k) =

Q(f1, . . . , fk) and (g′1, . . . , g′k) = Q(g1, . . . , gk). Then, for every permutation
π of [k], ∑

i

‖f ′i − g′π(i)‖
2 ≤ 32

1−4γ

∑
i

‖fi − gπ(i)‖2 .

Furthermore,
∑
i‖f ′i‖2 =

∑
i‖g′i‖2 = 1 and supp(f ′i) ∩ supp(f ′j) = supp(g′i) ∩

supp(g′j) = ∅ for all i 6= j.
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We remark that Lemma 11 does not depend in any way on the fact that the
functions fi and gi are defined on IRd. (In fact, we could formulate the same
lemma for finite dimensional vectors with nonnegative coordinates. We choose to
state and prove the lemma in this form because the proof of Theorem 3 naturally
leads to nonnegative functions defined on IRd.) We prove Lemma 11 at the end
of this section. Assuming this lemma, we can prove Theorem 3 as follows:

Proof (Theorem 3). Let G be a unique game with vertex set V and alphabet
Σ = [k]. Suppose sdp(G) ≥ 1− ε. For a parameter σ > 0, which we determine
later, let fu,i := Mσ(ui) be the nonnegative functions in L2(IRd) obtained by
applying Mσ to a collection of vectors {ui}u∈V,i∈Σ corresponding to an optimal
solution for sdp(G). Since Mσ preserves norms, we have for every u ∈ V ,∑

i∈Σ
‖fu,i‖2 =

∑
i∈Σ
‖ui‖2 = 1 . (3.1)

Since 〈ui,uj〉 = 0 for i 6= j, Lemma 10 also shows that for every u ∈ V ,∑
i 6=j
〈fu,i, fu,j〉 ≤

∑
i6=j
‖ui‖ ‖uj‖ · e−1/4σ2

≤ e−1/4σ2
(∑
i∈Σ
‖ui‖

)2
≤ k · e−1/4σ2∑

i∈Σ
‖ui‖2 ≤ k · e−1/4σ2

. (3.2)

Hence, for σ2 = 1/(4 log(k/γ)), we can make sure that
∑
i6=j〈fu,i, fu,j〉 ≤ γ for

every u ∈ V . By Lemma 10, we have

E
(u,v,π)∼G

‖fu,i − fv,π(i)‖2 ≤ O(σ−2) E
(u,v,π)∼G

‖ui − vπ(i)‖2 ≤ O(σ−2)ε . (3.3)

For the last inequality, we used the assumption sdp(G) ≥ 1 − ε of Theo-
rem 3 and the fact that the vectors {ui}u∈V,i∈Σ form an optimal solution for
sdp(G). The functions {fu,i}u∈V,i∈Σ form an approximate solution for sdp+(G),
in the sense of (3.1)–(3.3). Using the smooth nonnegative orthogonalization
Q : L2(IRd)k → L2(IRd)k from Lemma 11, we obtain nonnegative functions
f ′u,i = Q(fu,1, . . . , fu,k)i that form a feasible solution for sdp+(G). Combining
(3.3) and Lemma 11 also shows that for small enough γ (say γ = 1/8),

E
(u,v,π)∼G

‖f ′u,i − f ′v,π(i)‖
2 ≤ O(1) E

(u,v,π)∼G
‖fu,i − fv,π(i)‖2 ≤ O(σ−2)ε .

Since we chose σ2 = Ω(1/ log k), it follows that sdp+(G) ≥ 1−O(ε log k).

3.1 Proof of Lemma 11 (Smooth Nonnegative Orthogonalization)

First, we consider the following orthogonalization step,

Q(1) : L2(IRd)k → L2(IRd)k, (f1, . . . , fk) 7→ (f ′1, . . . , f ′k) , (3.4)

f ′i(x) =
{
fi(x)−maxj 6=i fj(x) if fi(x) > maxj 6=i fj(x) ,
0 otherwise.

(3.5)
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Next, we consider the following renormalization step,

Q(2) : L2(IRd)k → L2(IRd)k , (3.6)(
f1, . . . , fk

)
7→
( 1
λf1, . . . ,

1
λfk
)
, (3.7)

where λ2 =
∑
i‖fi‖

2 . (3.8)

To prove Lemma 11, we choose Q as the composition of Q(1) and Q(2). Let
f1, . . . , fk and g1, . . . , gk be nonnegative functions in L2(IRd) as in Lemma 11,
i.e.,

∑
i 6=j〈fi, fj〉+

∑
i 6=〈gi, gj〉 ≤ γ and

∑
i‖fi‖2 =

∑
i‖gi‖2 = 1.

Let (f (1)
1 , . . . , f (1)

k ) = Q(1)(f1, . . . , fk) and (f (2)
1 , . . . , f (2)

k ) = Q(2)(f (1)
1 , . . . , f (1)

k ).
Similarly, let (g(1)

1 , . . . , g(1)
k ) = Q(1)(g1, . . . , gk) and (g(2)

1 , . . . , g(2)
k ) =

Q(2)(g(1)
1 , . . . , g(1)

k ). In the rest of the section, we first establish several properties
of these functions (see Claim 12 and Claim 13) and then use these properties to
prove Lemma 11.

Claim 12 (Properties of Q(1)).

1. For every permutation π of [k],∑
i

‖f (1)
i − g

(1)
π(i)‖

2 ≤ 8
∑
i

‖fi − gπ(i)‖2 .

2. For all i 6= j,
supp(f (1)

i ) ∩ supp(f (1)
j ) = ∅ .

3.
1 ≥

∑
i

‖f (1)
i ‖

2 ≥ 1− 2γ .

Proof. Item 2 holds, since by construction supp(f (1)
i ) = {x | fi(x) >

maxj 6=i fj(x)}. To prove Item 3, we observe that f (1)
i (x)2 > fi(x)2 −

2
∑
j 6=i fi(x)fj(x) and therefore as desired∑

i

∥∥f (1)
i

∥∥2 ≥
∑
i

∥∥fi∥∥2 − 2
∑
i 6=j

〈
fi, fj

〉
≥ 1− 2γ .

To prove Item 1, we will show that for every x ∈ IRd,∑
i

(
f (1)
i (x)− g(1)

π(i)(x)
)2 ≤ 8

∑
i

(
fi(x)− gπ(i)(x)

)2
. (3.9)

Since Q(1) is invariant under permutation of its inputs, we may assume π is
the identity permutation. At this point, we can verify (3.9) by an exhaustive
case distinction. Fix x ∈ IRd. Let if be the index i that maximizes fi(x). (We
may assume the maximizer is unique.) Let jf be the index such that fjf

(x) =
maxj 6=if fj(x). Similarly, define ig and jg such that gig (x) = maxi gi(x) and
gjg (x) = maxj 6=ig gj(x). We may assume that if = 1 and jf = 2. Furthermore,
we may assume ig, jg ∈ {1, 2, 3, 4}. Notice that the sum on the left-hand side of



Improved Rounding for Parallel Repeated Unique Games 11

(3.9) has at most two non-zero terms (corresponding to the indices i ∈ {if , ig} ⊆
{1, . . . , 4}). Hence, to verify (3.9), it is enough to show

max
i∈{1,...,4}

∣∣f (1)
i (x)− g(1)

i (x)
∣∣ ≤ 4 max

i∈{1,...,4}

∣∣fi(x)− gi(x)
∣∣ . (3.10)

Put ε = maxi∈{1,...,4}|fi(x)−gi(x)|. Let qi(a1, . . . , a4) := max{ai−maxj 6=i aj , 0}.
Note that f (1)

i (x) = qi
(
f1(x), . . . , f4(x)

)
and g(1)

i (x) = qi
(
g1(x), . . . , g4(x)

)
. The

functions qi are 1-Lipschitz in each of their four inputs. It follows as desired that
for every i ∈ {1, . . . , 4},∣∣∣f (1)

i (x)− g(1)
i (x)

∣∣∣ =
∣∣∣qi(f1(x), . . . , f4(x)

)
− qi

(
g1(x), . . . , g4(x)

)∣∣∣ ≤ 4ε .

Claim 13 (Properties of Q(2)).
1. For every permutation π of [k],∑

i

‖f (2)
i − g

(2)
π(i)‖

2 ≤ 4
1−4γ

∑
i

‖f (1)
i − g

(1)
π(i)‖

2 .

2. For all i ∈ Σ,
supp(f (2)

i ) = supp(f (1)
i ) .

3. ∑
i

‖f (2)
i ‖

2 = 1 .

Proof. Again Item 2 and Item 3 follow immediately by definition of the mapping
Q(2). To prove Item 1, let λf , λg > 0 be the multipliers such that f (2)

i = f (1)
i /λf

and g(2)
i = g(1)

i /λg for all i ∈ [k]. Item 1 of Claim 12 shows that λ2
f and λ2

g lie
in the interval [1 − 2γ, 1]. We estimate the distances between f (2)

i and g(2)
π(i) as

follows,∑
i

∥∥f (2)
i − g

(2)
π(i)
∥∥2 =

∑
i

∥∥∥ 1
λf

(
f (1)
i − g

(1)
π(i)
)

+
( 1
λf
− 1

λg

)
g(1)
i

∥∥∥2

≤ 2
λ2

f

∑
i

∥∥f (1)
i − g

(1)
π(i)
∥∥2 + 2

( 1
λf
− 1

λg

)2∑
i

∥∥g(1)
i

∥∥2 (since ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2)

≤ 2
1−2γ

∑
i

∥∥f (1)
i − g

(1)
π(i)
∥∥2 + 2

( 1
λf
− 1

λg

)2 (using
∑
i

‖g(1)
i ‖

2 ≤ 1) .

It remains to upper bound the second term on the right-hand side, (1/λf − 1/λg)2.
Since the function x 7→ 1/x is 1/a2-Lipschitz on an interval of the form [a,∞), we
have∣∣ 1

λf
− 1

λg

∣∣ ≤ 1
1−2γ

∣∣λf − λg∣∣
= 1

1−2γ

∣∣∣∣(∑i‖f
(1)
i ‖

2)1/2 −
(∑

i‖g
(1)
π(i)‖

2
)1/2

∣∣∣∣
≤ 1

1−2γ

(∑
i

(
‖f (1)
i ‖ − ‖g

(1)
π(i)‖

)2
)1/2

(using triangle inequality)

≤ 1
1−2γ

(∑
i
‖f (1)
i − g

(1)
π(i)‖

2
)1/2

(using triangle inequality) .
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Combining the previous two estimates, we get as desired∑
i

∥∥f (2)
i − g

(2)
π(i)
∥∥2 ≤

(
2

1−2γ + 2
(1−2γ)2

)∑
i

∥∥f (1)
i − g

(1)
π(i)
∥∥2
.

Combining Claim 12 and Claim 13 yields Lemma 11.

Lemma (Restatement of Lemma 11). There exists a mapping
Q : L2(IRd)k → L2(IRd)k with the following properties: Let f1, . . . , fk and
g1, . . . , gk be nonnegative functions in L2(IRd) such that

∑
i‖fi‖2 =

∑
i‖gi‖2 = 1

and
∑
i6=j〈fi, fj〉 +

∑
i 6=j〈gi, gj〉 ≤ γ. Suppose (f ′1, . . . , f ′k) = Q(f1, . . . , fk) and

(g′1, . . . , g′k) = Q(g1, . . . , gk). Then, for every permutation π of [k],∑
i

‖f ′i − g′π(i)‖
2 ≤ 32

1−4γ

∑
i

‖fi − gπ(i)‖2 .

Furthermore,
∑
i‖f ′i‖2 =

∑
i‖g′i‖2 = 1 and supp(f ′i) ∩ supp(f ′j) = supp(g′i) ∩

supp(g′j) = ∅ for all i 6= j.

Proof. We choose Q = Q(2) ◦Q(1) as the composition of Q(1) and Q(2). In this case,
f ′i = f (2)

i and g′i = g(2)
i , where the functions f (2)

1 , . . . , f (2)
k and g(2)

1 , . . . , g(2)
k are

constructed as in the beginning of Section 3.1. Combining Item 1 of Claim 12 and
Item 1 of Claim 13 gives the desired upper bound on

∑
i‖f ′i − g′π(i)‖

2. Similarly,
the remaining properties desired of f ′i and g′i also follow by combining Claim 12
and Claim 13.
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A Further Proofs

A.1 Relation of Amortized Value and Semidefinite Value
Theorem (Restatement of Theorem 2). For every unique game G with
alphabet size k,

sdp(G)O(log k) ≤ opt(G) ≤ sdp(G) .
Proof. Feige and Lovász [6] show the upper bound on opt(G). (In particular,
they show opt(G`) ≤ sdp(G`) and sdp(G`) = sdp(G)`.) Charikar, Makarychev,
and Makarychev [3] show that opt(G) ≥ sdp(G)−C log k/C for some absolute
constant C ≥ 1. (This constant C is necessarily larger than 1.) Hence, we are
done if sdp(G)C′ log k ≤ 1/C for some absolute constant C ′ ≥ 1. (In this case, we
would have opt(G) ≥ sdp(G)−(C+C′) log k.)

On the other hand, if sdp(G) ≥ 1− ε, then Theorem 1 shows that opt(G`) ≥
1−C ′′

√
`ε log k for some absolute constant C ′′ ≥ 1. Hence, if ε log k ≤ 1/(2C ′′)2,

then we can find a natural number ` = Ω(1/(ε log k)) such that opt(G`) ≥ 1/2,
which implies opt(G) ≥ 2−1/` ≥ (1 − ε)O(log k) . It is straight-forward to check
that there exists an absolute constant C ′ ≥ 1 (depending on C and C ′′) such
that sdp(G)C′ log k > 1/C implies that ε log k ≤ 1/(2C ′′)2. We conclude that in
all cases opt(G) ≥ sdp(G)O(log k).
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A.2 Mapping Unit Vectors to Nonnegative Functions

Recall the definition of the mapping Mσ : IRd → L2(IRd), Mσ(u) := ‖u‖
√
Tūφσ .

Here, Tu is the translation operator on L2(IRd), so that Tuf(x) = f(x − u),
and φσ is the density of the Gaussian measure N(0, σ2)d with respect to the
usual Lebesgue measure λd on IRd, φσ(x) := (σ

√
2π)−de−‖x‖2/2σ2

. From the
definition of Mσ, it follows that the mapping preserves norms, so that ‖Mσ(u)‖ =
‖u‖ for every u ∈ IRd. The following fact about the (Hellinger) affinity of
translated Gaussians shows that the mapping Mσ also preserves angles (at least
approximately).

Lemma 14 ([2]). Let u and v be two unit vectors in IRd. Then∫
IRd

√
Tuφσ · Tvφσ dλd = e−‖u−v‖2/8σ2

.

Proof. Immediate from the identity
√
Tuφσ · Tvφσ = e−‖u−v‖2/8σ2

T 1
2 (u+v)φσ .

The following technical fact shows that in order for a mapping to preserve
distances it is enough to preserve lengths and distances of unit vectors (angles).

Fact 15. For any two vectors u,v ∈ IRn, we have

‖u− v‖2 = (‖u‖ − ‖v‖)2 + ‖u‖ ‖v‖ · ‖ū− v̄‖2 .

Combining Fact 15 and Lemma 14 yields Lemma 10.

Lemma (Restatement of Lemma 10). For any two vectors u,v ∈ IRd,

‖Mσ(u)−Mσ(v)‖2 ≤ O(σ−2) · ‖u− v‖2 .

Furthermore, 〈Mσ(u),Mσ(v)〉 = ‖u‖ ‖v‖ · e−1/4σ2 if u and v are orthogonal.

Proof. If u and v are orthogonal, then Lemma 14 shows that 〈Mσ(u),Mσ(v)〉 =
‖u‖ ‖v‖e−1/4σ2

, because ‖ū− v̄‖2 = 2 for any two orthogonal vectors u and v.
It remains to show the upper bound on ‖Mσ(u) −Mσ(v)‖2. By construction,
Mσ(u) = ‖u‖Mσ(ū) and Mσ(v) = ‖v‖Mσ(v̄). By Fact 15,

‖Mσ(u)−Mσ(v)‖2 = (‖u‖ − ‖v‖)2 + ‖u‖ ‖v‖ · ‖Mσ(ū)−Mσ(v̄)‖2 .

On the other, Lemma 14 implies that

1
2‖Mσ(ū)−Mσ(v̄)‖2 = 1− e−‖ū−v̄‖2/8σ2

≤ ‖ū− v̄‖2/8σ2 .

(Here, we used the approximation e−x ≥ 1− x.) Combining these bounds, yields
as desired

‖Mσ(u)−Mσ(v)‖2 ≤ (‖u‖ − ‖v‖)2 + ‖u‖ ‖v‖ · ‖ū− v̄‖2/4σ2 ≤ 1
4σ2 ‖u− v‖2 .

(The last inequality follows from Fact 15.)
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