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Abstract— A large number of interesting combinatorial opti-
mization problems like M C, M k-S, and U G
fall under the class of constraint satisfaction problems (CSPs).
Recent work [32] by one of the authors identifies a semidefinite
programming (SDP) relaxation that yields the optimal approximation
ratio for every CSP, under the Unique Games Conjecture (UGC).
Very recently [33], the authors also showed unconditionally that
the integrality gap of this basic SDP relaxation cannot be reduced
by adding large classes of valid inequalities (e.g., in the fashion of
Sherali–Adams LP hierarchies).

In this work, we present an efficient rounding scheme that
achieves the integrality gap of this basic SDP relaxation for every
CSP (and by [33] it also achieves the gap of much stronger
SDP relaxations). The SDP relaxation we consider is stronger
or equivalent to any relaxation used in literature to approximate
CSPs. Thus, irrespective of the truth of the UGC, our work yields
an efficient generic algorithm that for every CSP, achieves an
approximation at least as good as the best known algorithm in
literature.

The rounding algorithm in this paper can be summarized
succinctly as follows: Reduce the dimension of SDP solution by
random projection, discretize the projected vectors, and solve the
resulting CSP instance by brute force! Even the proof is simple in
that it avoids the use of the machinery from unique games reductions
such as dictatorship tests, Fourier analysis or the invariance principle.

A common theme of this paper and the subsequent paper [33]
is a robustness lemma for SDP relaxations which asserts that ap-
proximately feasible solutions can be made feasible by “smoothing”
without changing the objective value significantly.

Keywords-semidefinite programming, approximation algorithms,
rounding algorithm, integrality gap, dimension reduction, constraint
satisfaction problem.

1. I

A vast majority of approximation algorithms involve
two distinct phases—relaxation and rounding. More pre-
cisely, given an instance = of a combinatorial optimization
problem Γ, most approximation algorithms consist of the
following two stages:

Relaxation: A convex relaxation =relax (linear or
semidefinite) of the instance = is constructed. These re-
laxations can be optimized efficiently using interior point
methods [36], [30]. Being a relaxation, the optimum to =relax
is trivially at least as good (larger for maximization, smaller
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otherwise) as the optimum to =. Hence, the value of the
optimum solution to =relax serves as a bound on the optimum
value for the original instance =. The integrality gap of the
relaxation is the maximum possible gap over all instances
of the problem Γ, between the optimum of the original
instance = and that of the relaxation =relax.

Rounding: In this step, the optimal solution to the
convex relaxation =relax is used to obtain a solution to the
original instance =. By exhibiting a solution to = which is
within an α factor of the solution to =relax, the rounding yields
an α factor approximation guarantee. Further, the rounding
algorithm serves as a constructive proof that the integrality
gap of the relaxation is at most α. Hence, this is easily the
most difficult step requiring ingenuity and techniques from
linear programming duality, metric embeddings and other
areas. We will call a rounding scheme to be optimal for the
relaxation, if it achieves an approximation guarantee equal
to the integrality gap of the relaxation. In other words, an
optimal rounding scheme extracts the best solution that could
possibly be obtained from the relaxation.

Among the relaxation techniques, perhaps the most general
and powerful is semidefinite programming. A semidefinite
program consists of vector valued variables, with linear
constraints on their inner products. The objective being
optimized is a linear function of the inner products of
the variables. Since the seminal work of Goemans and
Williamson [15], SDPs have fueled some of the major
advances in approximation algorithms. They have found
application to problems ranging from constraint satisfaction
problems [6], [27], [20], [17], [5], [10] to vertex coloring [19],
[2], [9], [11], vertex ordering [7], [12] to graph decomposition
[13], [3], and discrete optimization [29], [8], [1], [24].

Despite all the successes, rounding the solution of a
semidefinite program remains a difficult task. Contrast this
to linear programming which has seen the development
of primal-dual [35] and iterative rounding techniques [18],
[34], leading to simple combinatorial algorithms. Part of
the problem is that the approximation ratios involved in
SDP based algorithms are irrational numbers stemming from
the geometry of vectors. Even for problems like M 3-S
where the optimal approximation ratio is a simple fraction
like 7

8 [20], the analysis of the rounding procedure is fairly



involved. In this work, we study the problem of rounding
a natural SDP relaxation for general constraint satisfaction
problems.

In a constraint satisfaction problem (CSP), the objective
is to find an assignment to a set of variables that satisfies
the maximum number of a given set of constraints on them.
Formally, a CSP Λ is specified by a set of predicates over
a finite domain [q] = {1, . . . , q}. Every instance of the
problem Λ consists of a set of variables V , and a set of
constraints on them. Each constraint consists of a predicate
from Λ applied to a subset of variables. The objective is to
find an assignment to the variables that satisfies the maximum
number of constraints. More generally, the predicates can be
replaced by bounded real valued payoff functions while the
objective is to maximize the total payoff. A large number
of the fundamental optimization problems such as M C
and M k-S are examples of CSPs.

Beginning with the work of Goemans and Williamson
[15] on the M C, semidefinite programs have been
instrumental in approximation algorithms for several well
known CSPs like M 2-S [6], [27], M 3-S [20], M
4-S [16] , M k-CSP [37], [17], [6], M DC [28],
M C G [8] and U G [5], [10]. Underlying
all these works on seemingly diverse CSPs lies the simplest
semidefinite relaxations for the problems. Even though the
rounding techniques vary from one problem to another, the
SDP relaxation involved in all these algorithms is roughly
the same.

In fact, the Unique games conjecture of Khot [21] implies
that indeed the simplest semidefinite relaxation yield the
optimal approximation ratios for CSPs. While several UG
hardness results for problems like M C [23], [25], [31],
M 2-S [22], [4] suggested such an implication, its full
generality was realized in recent works by Austrin [4] and
one of the authors [32]. Specifically, it was shown in [32]
that a simple generic SDP relaxation yields the optimal
approximation for every CSP assuming the Unique Games
Conjecture. Henceforth, we shall use SDPgen to denote this
generic relaxation, which is either equivalent or stronger than
every SDP relaxation used for an algorithm in literature.

Surprisingly, this pursuit for UG-hardness results has led
to new rounding schemes for CSPs. The connection between
rounding schemes and UG hardness was first pointed out
in the work of Austrin [4] on Boolean 2-CSPs. Fleshing
out this connection in its full generality, [32] designed
rounding schemes that achieve the optimal approximation
ratio for every CSP assuming the Unique Games Conjecture.
Consequently, assuming the Unique Games conjecture, for
every CSP, it is clear what the optimal SDP relaxation is,
and how to round it.

Yet, the situation is not entirely satisfactory, since the
optimality of these generic rounding schemes relies on the
Unique games conjecture. In other words, if the Unique
games conjecture were to be false, there would be no

guarantee on the performance of generic rounding scheme
in [32]. Towards rectifying this, the work [32] also obtains
an unconditional guarantee on the rounding scheme for the
case of 2-CSPs. Specifically, for every 2-CSP, irrespective
of the truth of UGC, the generic rounding scheme in [32]
achieves an approximation equal to the integrality gap of
the SDP relaxation SDPgen. In a related work, O’Donnell
and Wu [31] obtained rounding schemes that achieve the
integrality gap of the relaxation unconditionally for the M
C problem.

For general CSPs with arity greater than 2, there are no
known rounding schemes that are optimal for the relaxation
SDPgen, unless one assumes UGC. To show unconditional
guarantees, the approach of [32] relies on the Khot–Vishnoi
integrality gap [26] for unique games. Extending this ap-
proach to CSPs of arity greater than 2, is tied to the problem
of constructing integrality gaps for stronger SDP relaxations
of unique games. Specifically, extending the unconditional
result of [32] to a CSP of arity r would require an SDP
integrality gap for roughly r-rounds of any of the SDP
hierarchies.

Integrality gaps for such strong SDP relaxations of Unique
Games were not known, when this work was concieved. In
subsequent work [33], the authors used techniques from this
paper to construct integrality gaps for strong SDP relaxations
of Unique Games. However, the resulting rounding scheme
from [32] remains very complex, with its proof relying on
a web of reductions between integrality gaps, UG hardness
results and dictatorship tests.

1.1. Results

In this work, we design a generic rounding scheme that
achieves the integrality gap of the relaxation SDPgen for every
CSP unconditionally. To state our result precisely, we need
to define the SDP integrality gap curve SΛ(c) for a CSP Λ.
Let sdp(P) denote the objective value of an optimal solution
for the SDPgen relaxation of an instance P. Let opt(P)
denote the value of the optimal solution to P. The integrality
gap curve SΛ(c) is the minimum value of opt(P), given
that sdp(P) = c where the minimum is over all instances P
of the problem Λ. Formally,

SΛ(c) = inf
P∈Λ,sdp(P)=c

opt(P) .

Theorem 1.1: For every CSP Λ and for every ε > 0, there
exists a polynomial time approximation algorithm for Λ-CSP
that returns an assignment of value at least SΛ(c − ε) − ε
on an instance Φ with SDP value c. The algorithm runs in
time exp(exp(poly(kq/ε))).

The above result also holds in the more general setting
where predicates are replaced by bounded real valued payoff

functions. For a traditional CSP Λ consisting of predicates,
the above theorem implies the following corollary.

Corollary 1.2: Given a Λ-CSP with non-negative valued
payoff functions, for every ε > 0, there exists a polynomial



time approximation algorithm for Λ-CSP with approximation
ratio at most the integrality gap αΛ defined as,

αΛ
def
= sup

P

sdp(P)
opt(P)

.

The algorithm runs in time exp(exp(poly(kq/ε))).
As already pointed out, the relaxation SDPgen is either

equivalent to or stronger than every SDP relaxation used
to approximate a CSP. Hence, this work yields a generic
algorithm that for every CSP, achieves an approximation ratio
at least as good as the best known algorithm in literature.

On the downside, the proof of optimality of the rounding
scheme is non-explicit. To show the optimality of the round-
ing scheme, we proceed as follows: given an instance = on
which the rounding scheme only achieves an α approximation,
we exhibit an instance on which the integrality gap of the
SDP is at least α. In particular, this yields no information on
the approximation ratio α achieved by the rounding scheme.
However, the techniques in this work yield an algorithm to
compute the integrality gap of SDPgen for any given CSP Λ.

Theorem 1.3: For every constant ε > 0 and every CSP Λ,
the integrality gap curve SΛ(c) can be computed to an additive
approximation of ε in time exp(exp(poly(kq/ε))).

Not only does our approach bypass the need for strong SDP
gaps for unique games, but it is in fact surprisingly simple.
Underlying this work are two ideas: dimension reduction and
discretization of SDP vectors. In fact, this work does not
make use of any of the machinery from UG hardness results
like dictatorship tests, Fourier analysis, Hermite analysis or
the invariance principle.

2. P O
Underlying this work are two surprisingly simple ideas:

dimension reduction and discretization of SDP vectors. In
this section, we elucidate how these are employed to obtain
rounding schemes for CSPs. We begin by describing the
generic SDP relaxation SDPgen for a well known CSP
- Max3SAT. Fix a Max3SAT instance Φ consisting of
variables V = {y1, . . . , yn} and clauses P = {P1, . . . , Pm}.
The variables in SDPgen are as follows:

– For each variable yi, introduce two vector variables ui =

{u(i,0), u(i,1)}. In the intended solution, the assignment yi =

1 is represented by u(i,0) = 0 and u(i,1) = 1, while yi = 0
implies u(i,0) = 1, u(i,1) = 0.

– For each clause we will introduce 8 variables to
denote the 8 different states possible. For instance, with
the clause P = (y1 ∨ y2 ∨ y3) we shall associate 8
variables µP = {µ(P,000), µ(P,001), . . . , µ(P,111)}. In general,
the variables µP form a probability distribution locally
over integral solutions.

– Let u0 denote a variable representing the constant 1.
The relaxation SDPgen has the minimal set of constraints
necessary to ensure that for every clause P ∈ P, the

following hold: Firstly, µP is a valid probability distribution
over local assignments ({0, 1}3). Further, the inner products
of the vectors corresponding to variables in P match the
distribution µP. The objective value to be maximized can
be written in terms of the local integral distributions µP as
follows: ∑

P∈P

∑
x∈{0,1}3

P(x)µP,x

We wish to point out that the relaxation SDPgen is an
extremely minimal SDP relaxation. For instance, if two
variables yi, y j do not occur in a clause together, then SDPgen
does not impose any constraints on the inner products of
the corresponding vectors {u(i,0), u(i,1), u( j,0), u( j,1)}. Specifically,
the inner product of u(i,0) and u( j,0) could take negative values
in a feasible solution. While this might suggest that SDPgen
is too weak a relaxation, recall that no stronger relaxation has
been used to approximate a CSP yet, and indeed no stronger
relaxation helps, under the Unique games conjecture.

Given the SDP solution to the instance Φ, we construct
a constant sized M 3-S instance Φ′ which serves as
a model for Φ. More specifically, we construct a parti-
tion S 1 ∪ S 2 ∪ . . . S m = V of the set of variables V in
to m subsets for some constant m. The instance Φ′ is over m
variables {s1, s2, . . . , sm} corresponding to subsets S 1, . . . , S m.
Essentially, the instance Φ′ is obtained by merging all the
variables in each of the sets S i to a corresponding variable si.
We will refer to Φ′ as a folding of the instance Φ.

Observe that any assignment A′ to Φ′ yields a corre-
sponding assignment A to Φ by simple unfolding, i.e.,
assign A(y j) = A′(si) for every variable y j in the set S i.
Clearly, the fraction of clauses satisfied by assignment A
on Φ is exactly the same as those satisfied by A′ on Φ′.
Observe that any folding operation immediately yields a
rounding scheme— “Find the optimal assignment to Φ′ by
brute force, and unfold it to an assignment for Φ.”

To show the optimality of this scheme, the crucial property
we require of the folding operation is that it preserves
the SDP value. Clearly, any folding operation can only
decrease the value of the optimum for the SDP relaxation,
i.e, sdp(Φ′) 6 sdp(Φ). We will exhibit a folded instance Φ′

such that sdp(Φ′) ≈ sdp(Φ). More precisely, we will exhibit
a folded instance Φ′ with approximately the same clauses
as Φ, and roughly the same SDP value. Such a folded
instance Φ′ will serve as a certificate for the optimality
of the rounding scheme. Recall that the folded instance is an
integrality gap instance with a SDP value sdp(Φ′) ≈ sdp(Φ)
and optimum value opt(Φ′). By definition, the scheme returns
an assignment of value opt(Φ′) on the instance Φ with
SDP value sdp(Φ). Thus the rounding scheme achieves an
approximation no worse than the integrality gap of the SDP.

At this juncture, we would like to draw a parallel between
this approach and the work of Frieze–Kannan [14] on
approximating dense instances of NP-hard problems. Given a



dense instance of M C, they construct a finite model that
approximates the instance using the Szemerédi Regularity
lemma. This finite model is nothing but a folding of the
instance that preserves the optimum value for M C. In
contrast, we construct a finite model for arbitrary instances
that need not be dense, while preserving an arguably simpler
property— the SDP optimum.

Summarizing the discussion, the problem of rounding has
been reduced to finding an algorithm to merge variables in
the instance in to a few clusters, while preserving the SDP
value. Intuitively, the most natural way to preserve the SDP
value would be to merge variables whose SDP vectors are
close to each other. In other words, we would like to cluster
the SDP vectors {u(i,b)} into a constant number of clusters.
A first attempt at such a clustering would be as follows:
partition the ambient space in to bins of diameter at most ε,
and merge all the SDP vectors that fall in to the same bin.
The number of clusters created is at most the number of bins
in the partition.

In general, the optimum SDP vectors {u(i,b)} lie in a space
of dimension equal to the number of variables in the SDP
(say n). A partition of the n-dimensional sphere in to bins of
diameter at most ε, would require roughly (1/ε)n bins, while
our goal is to use a constant number of bins. Simply put,
there is little chance that n vectors in a n-dimensional space
are clustered in to a few clusters. To address this issue, we
pursue the most natural approach: first perform a dimension
reduction on the SDP vectors by using random projections,
and then cluster them together.

Heuristically, for large enough constant d, when projected
in to a random d-dimensional space, at least 1 − ε fraction
of the inner products would change by at most ε. Further,
merging variables within the same bin of diameter ε, could
affect the inner products by at most ε. Thus the SDP value
of the folded instance should be within O(ε) of the original
SDP value. The number of variables in the folded instance
would be (1/ε)d— a constant.

Making the above heuristic argument precise forms the
technical core of the paper. While this is easy for some 2-
CSPs like M C, extending it to CSPs of larger arity and
alphabet size is non-trivial. The central issue to be addressed
is how does one respect all the constraints of the SDP during
dimension reduction. In fact, for stronger SDP relaxations
such as the one in [3], it is unclear whether a dimension
reduction can be carried out at all. For a subset of CSP
variables involved in a constraint P, the SDPgen relaxation
requires the inner products of the corresponding SDP vectors
to be consistent with a local integral distribution µP. This
translates in to the SDP vectors satisfying special constraints
amongst themselves. For instance, even for a CSP of arity 3
such as M 3-S, this implies the triangle inequalities on
every 3-tuple of variables involved in a clause.

To make the argument precise, we use the smoothing
operation defined in [32] which in some sense introduces

noise to the SDP vectors. Interestingly, the smoothing
operation was applied for an entirely different purpose in
[32]. For every CSP instance, there is a canonical SDP
solution {u(i,b)} corresponding to the uniform distribution
over all possible integral solutions. Given an arbitrary
SDP solution {u(i,b)}, the ε-smoothed solution is defined
by u∗(i,b) =

√
1 − ε u(i,b) ⊕

√
εu(i,b), where ⊕ denotes the direct

sum of vectors. Clearly, the SDP objective value changes
by at most O(ε) due to smoothing. We observe that if the
vectors {u(i,b)} are close to satisfying a valid inequality (say
triangle inequality) approximately, then by smoothing, the
new solution {u∗(i,b)} satisfies the inequality. We present a
separate argument to handle the equality constraints in the
SDP.

In the original instance Φ, for every clause P, the inner
products of the vectors involved match a local integral
distribution µP. After random projection and discretization,
for at least 1−ε fraction of the clauses in Φ, the corresponding
inner products match a local integral distribution up to an
error ε. Let us refer to these 1 − ε fraction of the clauses as
good. Apply the smoothing operation on the discretized SDP
solution. For each good clause, the smoothed SDP solution
is consistent with a local integral distribution. To finish the
argument, we discard the ε-fraction of the bad clauses from
the folded instance Φ′. By the definition of SDPgen, once a
bad clause P is dropped from the instance, it is no longer
necessary to satisfy the SDP constraints corresponding to P.
Hence, we conclude sdp(Φ′) ≈ sdp(Φ).

3. P

3.1. Constraint Satisfaction Problems

In this work, we consider a generalization of constraint
satisfaction problems where we allow payoff functions taking
values in [−1, 1], instead of predicates taking values in {0, 1}.
Formally, let Λ be a family of payoff functions P : [q]k →

[−1, 1]. We say Λ has arity k and alphabet [q] def
= {1, . . . , q}.

A function P′ : [q]V → [−1, 1] has type Λ if for some P ∈ Λ

and some i1, . . . , ik ∈ V , we have P′(x) = P(xi1 , . . . , xik ) for
all x ∈ [q]V . We define V(P′) ⊆ V to be the set of coordinates
that P′ depends on. In other words, if P′(x) = P(xi1 , . . . , xik ),
then V(P′) = {i1, . . . , ik}. In particular, |V(P′)| 6 k for any
function P′ of type Λ. A Λ-CSP instance P with variable
set V is a distribution over payoff functions P : [q]V → [−1, 1]
of type Λ.

Problem 3.1 (Λ-CSP (CSP)):
Given a variable set V and a distribution P over payoff

functions P : [q]V → [−1, 1] of type Λ, the goal is to find
an assignment x ∈ [q]V so as to maximize EP∼P P(x) . We
define the value opt(P) as

opt(P) def
= max

x∈[q]V
E

P∼P
P(x) .

Observe that if the payoff functions P are predicates, then
maximizing the payoff amounts to maximizing the number



of constraints satisfied.

3.2. SDP Relaxation

We consider the following relaxation for Λ-CSP: Given an
instance P with variable set V , the goal is to find a collection
of vectors {ui,a}i∈V,a∈[q] ⊆ �

d and a collection {µP}P∈supp(P) of
distributions over local assignments. Each distribution µP is
over [q]V(P) (the set of assignments to the variable set V(P)).
We will write Prx∈µP {E} to denote the probability of an
event E under the distribution µP.

S R SDPgen

maximize E
P∼P

E
x∼µP

P(x) (1)

subject to 〈ui,a, u j,b〉 = Pr
x∼µP

{
xi = a, x j = b

}
(2)

(P ∈ supp(P) i, j ∈ V(P), a, b ∈ [q]) ,

〈ui,a, u0〉 = Pr
x∼µP

{
xi = a

}
(3)

(P ∈ supp(P), i ∈ V(P), a ∈ [q]) .

Here u0 can be any fixed unit vector in �d, and d can be
any sufficiently large number, say d = q|V |.

We denote by sdp(P) the maximum value of an SDP
solution for P. Clearly, sdp(P) > opt(P).

We claim that the optimization problem SDPgen is (equiv-
alent to) a semidefinite program of polynomial size and thus
it can be solved in polynomial time (to arbitrary accuracy).
To show this claim, let us introduce additional real-valued
variables µP,x for P ∈ supp(P) and x ∈ [q]V(P). We add the
constraints µP,x > 0 and

∑
x∈[q]V(P) µP,x = 1. We can now make

the following substitutions to eliminate the distributions µP,

E
x∼µP

P(x) =
∑

x∈[q]V(P)

P(x)µP,x ,

Pr
x∼µP

{
xi = a

}
=

∑
x∈[q]V(P)

xi=a

µP,x ,

Pr
x∼µP

{
xi = a, x j = b

}
=

∑
x∈[q]V(P)

xi=a,x j=b

µP,x .

After substituting the distributions µP by the scalar vari-
ables µP,x, we are left with a linear optimization problem
over the cone of positive semidefinite matrices—an SDP—of
size poly(qk, |supp(P)|).

4. R G CSP
Variable folding: Let P be a Λ-CSP instance with

variable set V = [n]. For a mapping ϕ : V → W, we
define a new Λ-CSP instance P/ϕ on the variable set W
by identifying variables of P that get mapped to the same
variable in W. Formally, the payoff functions in P/ϕ are of the
form P(xφ(1), . . . , xφ(n)) for x ∈ [q]W . Since any assignment
for P/φ corresponds to an assignment for P, we can note
the following fact.

Fact 4.1: opt(P) > opt(P/φ).
In general, the optimal value of the folded instance might
be significantly lower than the optimal value of the original
instance. However, we will show that we can always find a
variable folding that approximately preserves the SDP value
(of an instance that is close to the original instance).

Theorem 4.2: Given ε > 0 and a Λ-CSP instance P, we
can efficiently compute another Λ-CSP instance P′ and a
variable folding φ such that

1) P′ is obtained by discarding an ε fraction of payoffs
from the instance P. Formally, V(P′) = V(P) and ‖P−
P′‖1 6 ε,

2) sdp(P′/φ) > sdp(P) − ε,
3) the variable set of P′/φ has cardinality exp(poly(kq/ε)).

Given the above theorem, we can immediately show the
main results of the paper.

Proof of Theorem 1.1: Given a Λ-CSP instance P with
variable set V = [n], we first compute another instance P′ and
a variable folding φ according to Lemma 4.2. Since P′/φ has
only exp(poly(kq/ε)) variables, we can compute an optimal
assignment for P′/φ in time exp(exp(poly(kq/ε))). This assign-
ment can be unfolded to an assignment x ∈ [q]n with the same
value for P′. Since ‖P−P′‖1 6 ε, the assignment x has value
at least opt(P′/φ)− ε for the instance P. By definition of SΛ,
we have opt(P′/Φ) > SΛ(sdp(P′/Φ)) > SΛ(sdp(P)−ε). Hence
the assignment x ∈ [q]n has value at least SΛ(sdp(P)− ε)− ε
as claimed.

Proof of Theorem 1.3: By Theorem 4.2, to compute the
SDP integrality gap within ε, it is sufficient to go over all
instances of size exp(poly(kq/ε)). Thus the algorithm would
just discretize the space of instances with exp(poly(kq/ε))
many variables, and compute the SDP and optimum value
for each instance.

The rest of this section is devoted to the proof of
Theorem 4.2. The construction of P′/φ is described below:

C  P′/φ

Dimension reduction: Let {ui,a}i∈V, a∈[q], {µP}P∈supp(P) be
an SDP solution for a Λ-CSP instance P on the variable
set V = [n]. Suppose ui,a ∈ �D. We apply the following
procedure to reduce the dimension from D to d.

1) Sample a d × D Gaussian matrix Φ, where each entry
is independently distributed according to the Gaussian
distribution N(0, 1/d).

2) For every vector ui,a, compute its image ui,a under the
map Φ,

ui,a
def
= Φui,a .

Furthermore, define u0 := Φu0.
Discarding bad constraints: Let Bε ⊆ supp(P) be the

set of payoff functions P such that the vectors ui,a and
the distributions µP violate one of the SDP constraints
corresponding to P by more than ε. Define the instance P′



on the set of variables V by removing all payoff functions
in Bε from P. Formally, P′ is obtained by conditioning the
distribution P on the event P < Bε.

Folding by Discretization: Let N be an ε-net for the
unit ball in �d. We have |N | 6 (c/ε)d for some absolute
constant c. For every vector ui,a, let wi,a denote its closest
vector in N. We identify variables of P′ that have the same
vectors wi,a. Formally, we output the Λ-CSP instance P′/φ
where φ : V → Nq is defined as

φ(i) def
= (wi,1, . . . ,wi,q) .

4.1. Property of Dimension Reduction

The key property of the dimension reduction is that it
preserves inner products between vectors approximately.

Lemma 4.3 (Inner products are preserved approximately):
For any two vectors u1, u2 ∈ �D in the unit ball,

Pr
Φ

{∣∣∣〈Φ u1,Φ u2〉 − 〈u1, u2〉∣∣∣ > t
√

d

}
6 O (1/t2) .

For the sake of completeness, we present the straight-
forward proof of this property in Appendix 6.1. It is clear
that the dimension-reduced vectors ui,a together with the
distributions µP need not form a feasible SDP solution.
However, we can deduce from Lemma 4.3 that with good
probability most of the constraints will be near satisfied. It
follows that not too many payoffs are discarded from P to
construct P′.

Lemma 4.4: For every payoff P ∈ supp(P),

Pr
Φ
{P ∈ Bε} 6 O

(
k2q2

ε2d

)
.

4.2. Discretization

Consider two vectors ui,a and u j,b in the unit ball. It is
clear that if we move the vectors to their closest point in N,
their inner product changes by at most 2ε. (Since N is an
ε-net of the unit ball, each vector is moved by at most ε.)

A minor technical issue is that some of the points ui,a

might be outside of the unit ball. However, vectors of norm
more than

√
1 + ε can be ignored, because they violate the

constraint 〈ui,a,ui,a〉 6 1 by more than ε.
In particular, the following lemma holds.
Lemma 4.5: For small enough ε > 0, suppose the vec-

tors ui,a satisfy all constraints corresponding to some payoff

function P ∈ supp(P′) up to an error of ε. Then, the
vectors wi,a satisfy all constraints corresponding to P up
to an error of 4ε.

Here we are using the fact that for each payoff P ∈
supp(P′), the corresponding constraints in the relaxation
sdp(P′) involve just a single inner product. We also use the
fact the vectors ui,a for a variable i ∈ V(P) with P ∈ supp(P′)
have norms at most

√
1 + ε.

4.3. Robustness of SDP Relaxation SDPgen

To finish the proof of Theorem 4.2, we need to construct
a completely feasible SDP solution to P′/Φ from the
vectors wi,a which nearly satisfy all the constraints.

We will show the following theorem in Section 5.
Theorem 4.6 (Robustness of SDPgen): Let P be a Λ-CSP

instance on variable set V . Suppose {ui,a}i∈V,a∈[q], {µP}P∈supp(P)
is an ε-infeasible SDP solution for P of value α. Here, ε-
infeasible means that all constraints (2)–(3) of the relaxation
SDPgen are satisfied up to an additive error of at most ε.
Then,

sdp(P) > α −
√
ε · poly(kq) .

4.4. Proof of Theorem 4.2

Assuming Theorem 4.6 (Robustness of SDPgen) we can
now complete the proof of Theorem 4.2.

For simplicity, we assume that the SDP solution {ui,a}, {µP}

that was used in the construction of P′/φ has value sdp(P).
(The proof also works if the value of this SDP solution is
close to the optimal value.)

Recall that Bε ⊆ supp(P) is the set of payoff functions P
whose constraints are violated by more than ε by the
dimension-reduced vectors ui,a. For d � k2q2/ε3, Lemma 4.4
implies that with high probability, ‖P − P′‖1 6 ε. Note that
the vectors {ui,a} together with the original local distributions
{µP} form an ε-infeasible SDP solution for P′. Hence, by
Lemma 4.5, the SDP solution {wi,a}, {µP} is 4ε-infeasible.
The value of this SDP solution for the instance P′ is at
least sdp(P)−‖P−P′‖1 > sdp(P)−ε. The key observation is
now that the SDP solution {wi,a}, {µP} is also a solution for the
folded instance P′/φ. We see that P′/φ has a 4ε-infeasible
SDP solution of value at least sdp(P) − ε. Theorem 4.6
(Robustness of SDPgen) asserts that in this situation we can
conclude sdp(P′/φ) > sdp(P) −

√
ε · poly(kq). Finally, we

observe that the cardinality of the variable set of P′/φ is at
most |N |q 6 (c/ε)dq = 2poly(kq/ε).

5. S & S

Let {ui,a}, {µP} be an ε-infeasible SDP solution for a Λ-
CSP instance P on the variable set V = [n]. Recall that an
ε-infeasible SDP solution satisfies for all P ∈ supp(P), i, j ∈
V(P), and a, b ∈ [q],∣∣∣∣∣〈ui,a, u j,b〉 − Pr

x∼µP

{
xi = a, x j = b

}∣∣∣∣∣ 6 ε , (4)

and for all i ∈ V(P) and a ∈ [q],∣∣∣∣∣〈ui,a, u0〉 − Pr
x∼µP

{
xi = a

}∣∣∣∣∣ 6 ε . (5)

We construct a feasible solution that is close to the given
SDP solution in two steps.

In the first step, called “surgery”, we construct vectors
{ui,a} that satisfy the equality constraints on SDP vectors,
i.e., 〈ui,a,ui,b〉 = 0 for all a , b ∈ [q] and all i ∈ V and∑

a∈[q] ui,a = u0 for all i ∈ V .



In the second step, called “smoothing”, we construct a
feasible SDP solution {wi,a}, {µ′P}. In this step, the vectors
and the local distributions are “smoothed” which allows us to
modify the local distributions so that they match the vectors
perfectly.

Lemma 5.1: The vectors {ui,a} can be transformed to
vectors {ui,a} such that for all a , b ∈ [q] and all i ∈ V ,

〈ui,a,ui,b〉 = 0 , (6)

and for all i ∈ V , ∑
a∈[q]

ui,a = u0 . (7)

Furthermore, for i ∈ V and a ∈ [q],

‖ui,a − ui,a‖ 6
√
ε · poly(q) . (8)

In particular, the SDP solution {ui,a}, {µP} is η-infeasible for
η =
√
ε · poly(q).

Proof: From (4) it follows that ‖ui,a‖2 6 1 + ε and
|〈ui,a, ui,b〉| 6 ε. for all a , b ∈ [q]. Therefore, if we
apply the Gram–Schmidt orthogonalization process on the
vectors ui,1, . . . , ui,q, the resulting vectors u′i,1, . . . , u

′
i,q satisfy

‖ui,a − u
′
i,a‖ 6 O(ε · q). For every variable i ∈ V , we compute

a rescaling factor αi such that ui,0 :=
∑

a∈[q] αiu
′
i,a is a unit

vector. Note that αi = 1± ε ·poly(q). Furthermore, 〈ui,0, u0〉 >
1− ε · poly(q). Therefore, the angle ∠(ui,0, u0) =

√
ε · poly(q).

For every variable i ∈ V , we define a rotation Ui which
maps the vector ui,0 to ui and acts as the identity on the
space orthogonal to the plane span{ui,0, ui}. We claim that
the vector ui,a := αiUiu

′
i,a satisfy the conditions of the

lemma. By construction, the vectors satisfy the constraints (6)
and (7). Since Ui is a rotation by an angle of at most
√
ε · poly(q), we have ‖Ui − I‖ 6

√
ε · poly(q) and therefore

‖ui,a − αiu
′
i,a‖ 6

√
ε · poly(q). Previous observations imply

that ‖αiu
′
i,a − ui,a‖ 6 ε ·poly(q). Thus, the vectors {ui,a} satisfy

also the third condition (8).
The existence of a local distribution µP imposes constraints
on the vectors corresponding in V(P). Specifically, the inner
products of vectors corresponding to V(P) must lie in a
certain polytope QP of constant dimension, to ensure the
existence of a matching local distribution µP. The SDP
solution {ui,a} has local distributions that match up to an
error of η. In other words, for every payoff P, the vectors
corresponding to V(P) are within η distance from the
corresponding polytope QP.

The idea of smoothing is to take a convex combination of
the SDP solution {ui,a}, with the SDP solution corresponding
to uniform distribution over all assignments. By a suitable
basis change, the local polytopes QP can be made full-
dimensional, in that they are defined by a set of inequalities
(no equations involved). The SDP solution corresponding to
uniform distribution over all assignments, lies at the center
of each of these local polytopes QP. As {ui,a} is only η away
from each of these polytopes, it moves in to the polytope

on taking convex combination with the center. The above
intuition is formalized in the following lemma.

Lemma 5.2 (Smoothing): The local distributions {µP} can
be transformed to distributions {µ′P} such that for all P ∈
supp(P), i , j ∈ V(P), and a, b ∈ [q],

Pr
x∼µ′P

{
xi = a, x j = b

}
= (1 − δ)〈ui,a,u j,b〉 + δ · 1

q2 , (9)

where δ = q4k2η. Furthermore, for every P ∈ supp(P),

‖µP − µ
′
P‖1 6 3δ

Proof: Let us fix a payoff function P ∈ supp(P). Let
S = V(P). We may assume S = {1, . . . , k}. We can think of
µP as a function f : [q]k → � such that f (x) is the probability
of the assignment x under the distribution µP. For the case
q = 2, the constraint (9) translates to a condition on the
degree-2 Fourier coefficients of f . For larger q, we introduce
the following generalization of Fourier bases.

Let χ1, . . . , χq be an orthonormal basis of the vector space
{ f : [q] → �} such that χ1 ≡ 1. (Here, orthonormal means
Ea∈[q] χi(a)χ j(a) = δi j for all i, j ∈ [q]). By tensoring this
basis, we obtain the orthonormal basis {χσ | σ ∈ [q]k} of the
vector space { f : [q]k → �}. For σ ∈ [q]k, we have χσ(x) =

χσ1 (x1) · · · χσk (xk). For a function f : [q]k → �, we denote by
f̂ (σ) the χσ-coefficient of f , i.e., f̂ (σ) :=

∑
x∈[q]k f (x)χσ(x).

Note that f = Eσ∈[q]k f̂ (σ)χσ. Therefore, if we let f again
be the function corresponding to µP, then for all i , j ∈ S
and a, b ∈ [q]

Pr
x∼µP

{
xi = a, x j = b

}
=

∑
x∈[q]k

xi=a,x j=b

E
σ∈[q]k

f̂ (σ)χσ(x) (10)

= E
σ∈[q]2

f̂i j(σ)χσ(a, b). (11)

Here, f̂i j(s, t) is defined as the coefficient f̂ (σ) where σi = s,
σ j = t and σr = 1 for all r ∈ [q]\{i, j}. In the second equality
we used that for every σ with σr , 1 for some r ∈ [q] \ {i, j},
the sum over the values of χσ in (10) vanishes.

For every variable pair i , j ∈ S , let gi j : [q]2 → � be the
function gi j(a, b) = 〈ui,a,u j,b〉. Similarly, we let gi : [q]→ �
be the function gi(a) = 〈ui,a,ui,a〉 = 〈ui,a, u0〉. We define a
function f ′ : [q]k → � as follows

f̂ ′(σ) =


ĝi(s) if σi = s and σr =1 for all r ∈ [q]\{i},
ĝi j(s, t) if σi = s, σ j = t and σr =1 for r∈ [q]\{i, j},
f̂ (σ) otherwise.

The conditions (6) and (7) imply that ĝi(s) = ĝi j(s, 1) for
all i , j ∈ S . We also have f̂ (1) = ĝi(1) = ĝi j(1) = 1.
Therefore, the identity in (10)–(11) applied to f ′ shows that
for all i, j ∈ S and a, b ∈ [q],

〈ui,a,u j,b〉 =
∑

x∈[q]k

xi=a,x j=b

E
σ∈[q]k

f̂ ′(σ)χσ(x) =
∑

x∈[q]k

xi=a,x j=b

f ′(x) . (12)



We could finish the proof at this point if the function f ′

would correspond to a distribution µ′P over assignments [q]k.
The function f ′ satisfies

∑
x∈[q]k f ′(x) = f̂ (1) = 1 However, in

general, the function f ′ might take negative values. We will
show that these values cannot be too negative and that the
function can be made to a proper distribution by smoothing.

Let K be an upper bound on the values of the functions
χ1, . . . , χq. From the orthonormality of the functions, it
follows that K 6

√
q. Let fi j(a, b) = Prx∼µP

{
xi = a, x j = b

}
.

Recall that we computed in (11) the coefficients of fi j in the
basis {χs,t | s, t ∈ [q]}. Since the SDP solution {ui,a}, {µP} is
η-infeasible, we have

ĝi j(s, t) =
∑

a,b∈[q]

gi j(a, b)χst(a, b)

=
∑

a,b∈[q]

fi j(a, b)χst(a, b) ± K2q2η = f̂i j(s, t) ± K2q2η.

Therefore, | f̂ (σ) − f̂ ′(σ)| 6 K2q2η for all σ ∈ [q]k. Thus,

f ′(x) = E
σ∈[q]k

f̂ ′(σ)χσ(x) = E
σ∈[q]k

f̂ (σ)χσ(x) ± δ/qk

= f (x) ± δ/qk , (13)

where δ := K4k2q2η. Hence, if we let h = (1 − δ) · f ′ + δ ·U,
where U : [q]k → � is the uniform distribution U ≡ 1/qk,
then

h = (1 − δ) f ′ + δ/qk > (1 − δ) f > 0.

It follows that h corresponds to a distribution µ′P over
assignments [q]k. Furthermore, from (12) it follows that
for all i , j ∈ S and a, b ∈ [q],

Pr
x∼µ′P

{
xi = a, x j = b

}
= (1 − δ)〈ui,a,u j,b〉 + δ · 1

q2 .

Finally, let us estimate the statistical distance between the
distributions µP and µ′P,

‖ f − h‖1 = ‖δ( f − U) + (1 − δ)( f − f ′)‖1
6 2δ + ‖ f − f ′‖1 (using triangle inequality)
6 3δ (using (13)) .

In this way, we can construct a suitable distribution µ′P for
every P ∈ supp(P), which proves the lemma.

5.1. Proof of Theorem 4.6 (Robustness of SDPgen)

Let us consider an ε-infeasible SDP solution {ui,a}, {µP}

for a Λ-CSP instance P. Suppose that this SDP solution has
value α.

First, we construct vector {ui,a} as in Lemma 5.1. These
vectors together with the original local distributions {µP} form
an η-infeasible SDP solution for P, where η =

√
ε · poly(q).

Next, we construct local distributions {µ′P} as in Lemma 5.2.
Define new vectors

wi,a
def
=
√

1 − δ · ui,a ⊕
√
δ · u′i,a ,

where ⊕ denotes the direct sum of vectors and {u′i,a} are
vectors corresponding to the uniform average over all feasible
SDP solutions (which satisfy 〈u′i,a,u

′
jb〉 = 1/q2 for all i , j ∈ V

and all a, b ∈ [q]). From Lemma 5.1 and Lemma 5.2 it follows
that {wi,a}, {µ′P} is a feasible SDP solution for P.

It remains to estimate the value of this feasible SDP
solution:

E
P∼P

E
x∼µ′P

P(x) = α − E
P∼P

∑
x∈[q]V(P)

P(x)
(
µ(x) − µ′(x)

)
> α − E

P∼P
‖µ − µ′‖1

> α − η · poly(kq) .

For the first inequality, we used that |P(x)| 6 1. The second
inequality follows from Lemma 5.2. (In the last calculation,
we just verified that the value of SDP solutions is Lipschitz
in the statistical distance of the local distributions.)
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6. A

6.1. Property of Dimension Reduction

Lemma 4.3 (Inner products are preserved approximately,
restated): For any two vectors u1, u2 ∈ �D in the unit ball,

Pr
Φ

{∣∣∣〈Φ u1,Φ u2〉 − 〈u1, u2〉∣∣∣ > t
√

d

}
6 O (1/t2) .

Proof: Note that we may assume that both vectors are
unit vectors (otherwise, we can normalize them). Suppose
〈u1, u2〉 = α. By rotational invariance, we can assume that
u1 = (1, 0) and u2 = (α, β), where β =

√
1 − α2. Hence,

〈Φ u1,Φ u2〉 has the same distribution as

1
d

 d∑
i=1

αξ2
i + βξiξ

′
i

 ,
where ξ1, ξ

′
1, . . . , ξd, ξ

′
d are independent standard Gaussian

variables (mean 0 and standard deviation 1).
For each i, the expectation of αξ2

i +βξiξ
′
i is equal to α and

the variance is bounded (at most 2). Hence, the expectation
of 〈Φ u1,Φ u2〉 is equal to α and the standard deviation is
O(1/

√
d). The lemma follows from Chebychev’s inequality.
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