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Abstract

We study the behavior of the entangled value of two-player one-round projection games under par-
allel repetition. We show that for any projection game G of entangled value 1 — ¢ < 1, the value of the
k-fold repetition of G goes to zero as O((1 — £°)*), for some universal constant ¢ > 1. Previously paral-
lel repetition with an exponential decay in k was only known for the case of XOR and unique games. To
prove the theorem we extend an analytical framework recently introduced by Dinur and Steurer for the
study of the classical value of projection games under parallel repetition. Our proof, as theirs, relies on
the introduction of a simple relaxation of the entangled value that is perfectly multiplicative. The main
technical component of the proof consists in showing that the relaxed value remains tightly connected
to the entangled value, thereby establishing the parallel repetition theorem. More generally, we obtain
results on the behavior of the entangled value under products of arbitrary (not necessarily identical)
projection games.

Relating our relaxed value to the entangled value is done by giving an algorithm for converting a
relaxed variant of quantum strategies that we call “vector quantum strategy” to a quantum strategy. The
algorithm is considerably simpler in case the bipartite distribution of questions in the game has good
expansion properties. When this is not the case, rounding relies on a quantum analogue of Holenstein’s
correlated sampling lemma which may be of independent interest. Our “quantum correlated sampling
lemma” generalizes results of van Dam and Hayden on universal embezzlement to the following ap-
proximate scenario: two isolated parties, given classical descriptions of arbitrary bipartite states |¢), |¢)
respectively such that () ~ |¢), are able to locally generate a joint entangled state |¥) ~ |¢) =~ |¢)
using an initial entangled state that is independent of their inputs.

1 Introduction

Two-player one-round games play an important role in many areas of theoretical computer science. They
are prominent in complexity theory, where they are a powerful tool in the study of constraint satisfaction
problems, and in cryptography, where they give a polyvalent abstraction in which to establish the security
of many two-party primitives. They have also recently proven a very convenient framework for the study
of some of the deepest issues in quantum mechanics, giving a novel viewpoint on the decades-old study of
Bell inequalities, which are inequalities that must be satisfied by classical mechanics but can be violated in
the presence of quantum entanglement.
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A game G is specified by a probability distribution ¢ on pairs of questions (u,v) € U x V to the
players, and an acceptance criterion V C A x B x U x V which states, for every possible pair of questions
(u,v), which pairs of answers (a,b) € A x B are valid. The most basic quantity associated to a game is
its value: the maximum success probability of two cooperating, but spatially isolated, players in the game.
Remarkably, the precise definition of the value depends on the physical interpretation that is given to the
condition of spatial isolation. Under classical theory, isolated players are fully described by the functions
that each apply to their respective question in order to determine their answer, and this interpretation leads
to the classical value VAL of the game. In contrast, in quantum theory isolated players are allowed any set
of strategies that can be implemented by performing local measurements on a shared entangled state. The
resulting value is called the entangled value and denoted VAL*(G). Clearly for every game it holds that
VAL < VALY, and it is the discovery of Einstein, Podolsky and Rosen [EPR35]] (formalized by Bell [Bel64]],
simplified by Clauser et al. [CHSH69|] and experimentally verified by Aspect et al. [AGR&1]]) that there exists
games for which the inequality is strict; indeed there are families of games (G, ) for which VAL(G,,) — 0
but VAL*(G,) = 1 [Raz98|[Ara02]]. One can go even further and consider the non-signaling value VAL™,
which corresponds to players allowed to reproduce any bipartite correlations that do not imply signaling
between their isolated locations. Here again VAL* < VAL™, and there are games, such as the CHSH
game [CHSH6Y], for which the inequality is strict.

One of the most fundamental questions one may ask about two-player games is that of the behavior of
the value under product. Given games G and H, their product G & H is defined as follows: the question and
answer sets are the cartesian product of those from G and H; the distribution on questions is the product of
the distributions, and the acceptance criterion the AND of those of G and of H. How does the value of G ® H
relate to that of G and H? While it is clear that each of the three values defined above satisfies VAL(G ®
H) > vAL(G)VAL(H), the converse, although intuitive, does not hold in most nontrivial scenarios. In
particular, simple constructions of games G are known such that VAL(G ® G) = VAL(G) < 1 [FL92];
similar constructions exist for VAL* [CSUUOS]] and VAL [KR10].

In spite of these examples, one may still ask for the behavior of VAL(G®k), for “large” values of k.
This is known as the parallel repetition question: given a game G such that VAL(G) < 1, does there exist
an & < 1 such that VAL(G®¥) < a¥? If so, what is the dependence of & on 1 — VAL(G)? Answering
this question is of importance for many of the applications of two-player games. In cryptography, parallel
repetition is a basic primitive using which one may attempt to amplify the security guarantees of a given
protocol; in the study of Bell inequalities it can be used e.g. to amplify gaps between the quantum and
non-signaling values; in complexity theory it is at the heart of hardness amplification.

For the case of the classical value, a long sequence of works [Ver94, [Fei91} [FKOO] over the course of a
decade led to the breakthrough by Raz [Raz98]], who was the first to provide a positive answer for general
games: Raz showed that one can always take & = (1 — (1 — VAL(G)®)#19814>Bl 'where c, d are universal
constants. Subsequent work focused on obtaining the best possible value for c (the best known for general
games is ¢ = 3 [Hol09]) and on removing the dependence on the size of the answer alphabet for specific
classes of games [Rao08, BRR ™09, RR12]. For the case of the no-signaling value, Holenstein showed one
can always take &« = 1 — VAL(G)? [Hol09].

In contrast, for the case of the entangled value in spite of its importance the question is very poorly un-
derstood. Strong results are known for some very special classes of games such as XOR games [CSUUOS],
for which repetition is exact (one can take & = VAL*(G)) and unique games [KR10] (fora = 1 — C(1 —
VAL*(G))?, where C > 0 is a universal constant). However, both these results, as well as related results
motivated by cryptographic applications [HRO9]], rely on the formulation of the entangled value as a semidef-
inite program, a characterization that is not believed to extend to more general games. Additional results



are known but they only apply to specific games often originating from cryptography [MPA11l, [TEKW13].
The most general results known to date come from [KV11]], where it is shown that a specific type of repeti-
tion inspired by work of Feige and Kilian [FKOO], in which the original game is mixed with “consistency”
and “free” games, reduces the entangled value at a polynomial rate: provided VAL*(G) < 1, the value
VAL*(GFK=%F) of k “Feige-Kilian” repetitions of G behaves as ((1 — VAL(G))k) ¢ for some small ¢ > 0.

A recent work of Dinur and Steurer [DS13]] introduces a new approach to the parallel repetition question,
focused on the case of projection games. A projection game is one in which the referee’s acceptance criterion
has a special form: for any pair of questions (#, v), any answer b from the second player determines at most
one valid answer a = 71, (b) for the first player. Projection games are the most interesting and widely-
studied type of games. The standard transformation from 3SAT to a two-player game naturally results in
a projection game: one player is asked for an assignment to a random clause, and the other is asked for
an assignment to one of its three variables. This simple transformation easily generalizes to convert any
constraint satisfaction problem or general two-player game G into a projection game G’, while essentially
preserving the value: 1 — VAL(G') = ©(1 — VAL(G)) (see Claim[3). In particular, if one is only interested
in “amplifying the gap” between VAL(G) = 1 and VAL(G) < 1 one can first map G to G’ and then consider
the parallel repetition of G’ itself, and this justifies the predominant role played by projection games in
classical complexity theory. The transformation, however, may decrease the entangled value arbitrarily
whenever the optimal strategy for the players requires the use of entanglement (though it can never increase
it by too much; see Claim 3| for precise bounds). Nevertheless, many of the games studied in quantum
information, such as the CHSH game [CHSHG69] or the Magic Square game [Ara02] are projection games.

The approach of [DS13] is based on the introduction of a relaxation of the game value, denoted VAL, .
This relaxation can be defined for any game (we give the definition in Section|[I.2]below), and it is perfectly
multiplicative. Moreover, for the case of projection games VAL, turns out to remain closely related to
VAL, thus giving a parallel repetition theorem. Although such a theorem already follows from Raz’s general
result [Raz98]], this arguably simpler approach matches the best parameters currently known [Rao08] (which
are known to be optimal [Raz08]]). In addition, it yields new results for repetitions of games with small value
and the case of few repetitions, which has implications for the approximability of the LABEL COVER and
SET COVER problems.

1.1 Our results

We extend the analytical framework introduced in [DS13] to the case of the entangled value VAL*. As
a consequence we obtain the following main theorem on the parallel repetition of the entangled value of
projection games.

Theorem 1. There exists constants c, C > 0 such that the following holds. For any projection game G,

VAL (G®F) < (1—C(1—var*(G)))"2.

Although we do not attempt to fully optimize the constant c, values that come out of our proof are ¢ < 4
for the case of expanding games (see definition in Section[2.2)) and ¢ < 12 for arbitrary projection games.

Parallel repetition results for the classical value were originally motivated by the study of multi-prover
interactive proofs [FRS88]], and our result is likewise applicable to the study of classes of multi-prover in-
teractive proofs with entangled provers. For instance, it enables soundness amplification in some specific
cases. Letting MIP{'; (2) denote the class of languages having 2-prover 1-round interactive proofs in which
completeness ¢ = 1 holds with unentangled provers, but soundness s holds even against provers allowed to



share entanglement, then Theorem |1|implies that MIP{' (2) = MIP{, ,,,(2) forany s < 1— poly 1 (n).
This is because any protocol in MIPﬁ’fS (2) can be put into a form where the verifier’s test is a projection con-
straint by following the reduction already discussed above, and described in Claim 3} this will preserve both
perfect completeness (for classical strategies) and soundness bounded away from 1 (for quantum strategies).
Prior to our work it was not known how to amplify soundness to exponentially small without increasing the
number of rounds of interaction. It follows from [IV12] [Vid13] that MIPS" Iy (3) = NEXP, but very

1,1-po
little is known about the 2-prover class MIP{((2). ’

We believe that our results, however, should find applications to a much wider range of problems. Going
beyond the application to the parallel repetition question, our main contribution is the development of a
precise framework in which general questions about the behavior of the value under product can be studied.
This framework constitutes a comprehensive extension of the one introduced in [DS13] for the study of
the classical value: as in [DS13]], we introduce a relaxation VAL} of the entangled value, prove that it is
perfectly multiplicativity, and show that it remains closely related to VAL*. We find it remarkable that the
framework from [DS13]], introduced in a purely classical context, would find such a direct, if nontrivial,
extension to the case of the entangled value. We hope that the tools developed in this extension will find
further applications to the proof of product theorems in areas ranging from cryptography to communication
complexity. Even though at a technical level the setting can appear quite different, some of the ideas put
forth here could also prove useful to further removed areas such as the multiplicativity conjecture for the
minimum output entropy of quantum channels [AHWO00, HWOS| [Has09].

We turn to a more detailed explanation of our framework, hoping to highlight precisely those tools and
ideas that may find further application.

1.2 Proof sketch

In order to explain our approach it is useful to first review the framework introduced in [DS13]] for the study
of the classical value.

Classical strategies. The starting point in [DS13]] consists in viewing games as operators acting on the
space of strategies. In this language a strategy is simply a vector |f) of non-negative reals indexed by
pairs (u,a) of possible questions and answers: f(u,a) is the probability that the strategy decides to provide
answer a to question u. To any game one can associate a matrix G such that, formally, the success probability
of strategies (|f), |g)) for the players precisely evaluates to the vector-matrix-vector product (f|G|g). The
value of the game is then the norm of G when viewed as an operator from the appropriately normed spaces
of strategies.

The first crucial step taken in [DS13]] consists in relaxing the value of a game G to the value of the
square GG of the game (this notation will be made precise in Section ; we will denote the latter by
|Gl|g- In the square of a game G, the referee first samples a question u for the first player as in G. He then
independently samples two questions v and v’ for the second player according to the conditional distribution.
The players in G'G are sent v and v’ respectively. They have to provide answers b and b’ such that there
exists an a such that both (a, b) is a valid answer to (#,v) in G, and (a,b’) is a valid answer to (u,v’). Note
that now G'G treats both players symmetrically, and it turns out that we may always assume that they both
apply the same strategy. For the special case of projection games it is not hard to show that the value of the
game and that of its square are quadratically related:

VAL(G)? < |G|y < vAL(G). (1)



Indeed, using the algebraic language introduced above, the first inequality follows from the Cauchy-Schwarz
inequality and the second is an easy observation.

The second step consists in observing that the application of the operator corresponding to the product
G®H, where G and H are arbitrary projection games, can be decomposed as a product (G®1I) - (IQH).
Starting with a strategy |f) for G ® H, the result of applying (I®H) to |f) is a new vector which no longer
satisfies the strict normalization requirements of strategies. Understanding the new normalization leads to a
further relaxation of ||G||5, denoted VAL, (G), in which the optimization is performed over the appropriate
notion of “vector strategies”, which intuitively are vectors that can be obtained by applying game operators
to strategies. With the correct definition, it is easy to show that

IG@H|Z < vaL.(G) - [ H|]2. @)

The third and last step, which constitutes most of the technical work in [DS13l], consists in showing that
VAL, (G) is a good approximation to ||G||g. This is done using a rounding procedure, by which a vector
strategy associated with a large VAL is mapped back to an actual strategy for the square game that also has
a high value, thus serving as a witness for the value |G||5 being large as well. Altogether we get a bound
on the value of G®H as a product of a bound on the value of G and a bound on the value of H. Repeated
application of (2)) then leads to the following chain of inequalities

VAL(G®F)?2 < ||G®¥|12 < vAL4 (G) - [|GEF 1|2 < - < vAL, (G)* =~ vAL(G)E, (3)

proving the parallel repetition theorem.

Quantum strategies. Our goal now is to extend the above sketch to the case of the entangled value VAL®.
There is good reason for optimism. In contrast to most classical proofs used in the study of classical two-
player games (such as those that go into Dinur’s proof of the PCP theorem [Din07], or earlier approaches to
parallel repetition [Ver94, [FK00, [Raz98]]), which are often information-theoretic or combinatorial in nature,
the analytic (one could say linear-algebraic) framework introduced in [DS13]] seems much better suited a
priori to an extension to the quantum domain. Indeed, quantum strategies themselves are objects that live
in d-dimensional complex vector space: instead of a vector of non-negative reals (describing the probability
of answering a to question u, for every possible u and a), a strategy is now a vector |A) of d-dimensional
positive semidefinite matrices A¢ that describe the measurement to be performed upon receiving any ques-
tion u. The normalization condition is ), A% = Id for every u, a constraint dictated by the formalism of
measurements in quantum mechanics.

At an abstract level, going from the classical to the entangled value thus solely requires us to think
of the game G as an operator acting on a bigger space of strategies, “enlarging” the non-negative reals to
the space of d-dimensional positive semidefinite matrices. This operation is easily realized by “tensoring
with identity”, G — G ® Idcs. This said, extending each of the steps outlined above nevertheless raises a
number of challenges unique to the quantum setting, in which far more than in the classical case the strength
of strategies usually requires them to be studied in conjunction with the entanglement that enables their
unique form of correlation.

The first step consists in obtaining an analogue of (I)). As in the classical case the second inequality
is easy, and follows by observing that, if |A) is a quantum strategy in GG then (G ® Id)|A) is a valid
strategy for the first player in G (this notation will be made precise in Section [2.2]) The first inequality
in (I) is slightly more subtle. Although it can be proven directly by applying a suitable matrix version of
the Cauchy-Schwarz inequality, we note that it can also be proven using known properties of a widely used



construct in quantum information theory, the pretty-good measurement (PGM) [HWO4, HIST96]|. As it turns
out, the relaxation VAL*(G)? — || G||2 precisely corresponds to replacing the first player’s optimal choice of
strategy in G by a near-optimal choice obtained from the pretty-good-measurement. As a consequence, (1))
extends verbatim:

VAL (G)? < ||G||2 < vaL*(G). (1%)

Next we need to find an appropriate notion of vector strategy and corresponding relaxed value VALY, . Here
we are helped by the “operational” interpretation of a vector strategy as the result of the application a
game operator to a strategy meant for the product of several games. With the suitable generalization of the
definition of classical vector strategies (see Definition @ we also obtain an analogue of (2)) for VALY :

IGeHIlg < vALL(G) - [[H][3. (2%)

Finally, and most arduous, is to relate the relaxation VAL® back to the value of the square game, |G||2.
In the classical case this involves rounding vector to actual strategies. In the quantum case rounding has
to be performed synchronously by the players, and will necessarily involve the use of an entangled state.
Intuitively, upon receiving their respective questions in G the players need to initialize themselves in an
entangled state that corresponds to the “post-measurement state” that they would be in, conditioned on
having given a particular pair of answers to a given pair of questions in the game H from which the vector
strategy is derived (recall that, informally, vector strategies are the result of applying a game operator to a
strategy meant for the product of two or more distinct games).

In case the bipartite distribution of questions in the game G has good expansion properties we can show
that this conditioned state is roughly the same regardless of the questions in G, so there is a way for players to
renormalize their measurements and proceed. For the non-expanding case the states can differ significantly
from question to question. Nevertheless, we can show that based on their respective questions the players
are able to agree on classical descriptions of two close states |{) & |@) that they respectively wish to be in.

At this point an interesting component of our proof is a new “quantum correlated sampling” lemma
which allows the players to generate a joint entangled state |¥) ~ |¢) &~ |¢) from an initial shared
universal “embezzlement state” [VHO3|| independent of |¢) or |ip), without any communication. The lemma
can be seen as a quantum variant of Holenstein’s correlated sampling lemma [[Hol09], as well as a “robust”
extension of the results of van Dam and Hayden on universal embezzlement states [vHO3].

All steps having been extended, we obtain a direct generalization of the chain of inequalities (3)) to the
case of entangled strategies

VALY (G2 < [[GPH|E < vaLL(G) - G < - < vall (G)f = (vaL'(G))S. (3%

1.3 Additional related work

Although few general results are known, the question of the behavior of the entangled value of a two-
player game or protocol under parallel repetition arises frequently. It plays an important role in recent
results on device-independent quantum key distribution [HRO9, IMPA11]] and related cryptographic primi-
tives [TFKW13]]. The latter work considers parallel repetition of a game with quantum messages, a setting
which is also the focus of [CIPP11]. The approach of [CIPP11] builds upon [JPPG™10], who relate the
(classical) value of a two-player one-round game to the norm of the game when viewed as a tensor on the

I'We note however that the approximate equality VALY (G) ~ VAL*(G) that we obtain in the quantum case, although it suffices
for our application to parallel repetition, is weaker than the one from [DS13]]. In particular, it is probably not tight.



space £oo(¢1) ® Lo (£1). This is similar to our starting point of viewing games as operators acting on strate-
gies, except that it considers the game as a bilinear form rather than an operator; the two points of view are
equivalent. This perspective enables the authors to leverage known results on the study of tensor norms in
Banach space (resp. operator space) theory to derive results on the classical (resp. entangled) value. To the
best of our knowledge this connection has not led to an alternative approach to proving parallel repetition
for general classes of games, although partial results were obtained in [CJPP11] for the special case of the
entangled value of rank-one quantum games.

1.4 Open questions

We briefly mention several interesting open questions. There still does not exist any parallel repetition result
that applies to the entangled value of general, non-projection two-player one-round games, and it would be
interesting to investigate whether our techniques could lead to (even relatively weak) results in the general
setting. The case of three players is also of interest, and no non-trivial parallel repetition results are known
either in the classical or quantum setting. In fact, the closely related question of XOR repetition of three-
player games is known to fail dramatically even for the classical value [BBLV12].

Organization of the paper. We start with some important preliminaries in Section 2| There we introduce
the representation of games and strategies that is used throughout the remainder of the paper. In Section[3|we
introduce the two relaxations of the entangled value sketched in the introduction and give a more detailed
overview of our proof. In Section 4] we prove the main technical component of our work, the relation
between VAL’ and ||-||2. Finally, in Section [5|we state and prove the quantum correlated sampling lemma.

2 Preliminaries

2.1 Notation

We identify £(C%,C%), the set of linear operators from C% to C?, with the set of d x d’ matrices with
complex entries: if X € £(C%,C¥) then its matrix has entries X, = (a|X|b), where |a), |b) range over
the canonical basis for C%, C? respectively, and we use the bra-ket notation to denote column vectors |b) and
row vectors {a| = (|a))*, where 1 denotes the conjugate-transpose. We also write £(C?) for £(C?,C*).
The space £(C%,C) is a Hilbert space for the inner product (A, B) := Tr(A'B). We let || X ||« be the
operator norm of X, its largest singular value. A state |'¥) € C* is a vector with norm 1.

2.2 Games and strategies

Definitions. A two-player game is specified by question sets I/ and V), answer sets .A and B, a distribution
ponU x V), and an acceptance rule V C A x B x U x V. The game may also be thought of as a bipartite
constraint graph, with vertex sets I/ and V), edge weights (1, v), and constraints V(a, b, u,v) = 1 on each
edge (u,v). We will write y, for the marginal distribution of y on U, and g its marginal on V. (We omit
the subscripts L and R when they are clear from context.) We also often write v ~ u to mean that v is
distributed according to the conditional distribution y(v|u) = p(u,v)/pur(u). The size of G is defined as
U VIIAllBI.

In this paper we focus on projection games, which are games for which the acceptance rule V is such
that for every (u,v,b) € U x V x B there is at most one a € A such that V(a,b, u,v) = 1. Equivalently,
for every edge (u,v) the associated constraint is a projection constraint 77, : B — A such that 77, (D) is



the unique a such that V' (a, b, u,v) = 1 if it exists, and a special “fail” symbol L otherwise. When the edge
(u,v) is clear from context we will write b — a to mean that 77,,(b) = a. We also write b <> b’ to mean
that there exists an a, b — a and b’ — a.

Given a projection game G, let H be the weighted adjacency matrix associated with the square of G:
H is the |V| x |V| matrix whose (v,v')-th entry equals u(v,v") := Y, u(u)u(v|u)u(v’|u). Let D be
the diagonal matrix with the degrees g (v) on the diagonal, and L := Id —D~Y2HD~1/2 the normalized
Laplacian associated with the square of G. We say that a family of games (Gy,), where G, has size n, is
expanding if the second smallest eigenvalue of L, = L(G,) is at least a positive constant independent of 7.

Projection games as operators. Let G be a two-player projection game. We will think of G as a linear
operator G : CIVI @ CIBl — ¢l @ €Al defined as follows:

G —Zy olu) Y |u)(v| @ a)(p] € £(CV @ B, & A,

a,b—a

In other words, for |B) € CVl @ CIBI, et BY = (v,b|B) denote the value of B at point v, b. Then (GB)% =
Yo #(v|u) ¥y, BS. Note that here we adopted the convention that questions u € I/ are summed over,
whereas questions v € ) are weighted by the corresponding conditional probability p(v|u).

Classical strategies. The actions of players in a game G give rise to a “probabilistic assignment”, a col-
lection of probability distributions {p(a, b|u, v)} such that, for any pair of questions (u,v), p(-,-|u,v) is a
probability distribution on pairs of answers to those questions. We may also represent p as the rectangular
|U||A| x |V||B| matrix whose ((u,a), (v, b))-th entry is p(a, b|u, v). The value achieved by p in the game

is defined as
VAL(G, p) = Tru(Gp) Zy ZZV olu) Y p(a,blu,v),

b—a

where here we introduced a trace Tr;, on the set of all X € ,C(C‘u '® C'Al) by defining
Tr,ll(X) = Z.u(“) ZX(u,a),(u,a)'
u a

In cases of interest the family of distributions {p(a,b|u,v)} is not arbitrary, but has a bipartite struc-
ture which reflects the bipartite nature of the game. Classical strategies correspond to the case when

(a,blu,v) = f(alu)g(blv) for functions f(-|u) : A — {0,1} and g(-|v) : B — {0,1} taking the
Value 1 exactly once. The functions f and ¢ may be represented as vectors

=Y flalu)|u)|a) e U o and Zg blv)|o)|b) € €Vl @ CIBI
u,a

respectively. p is then the rank-one matrix p = |g) (f|, and we may express the value as
VAL(G, p) = Tru(Gp) = {f, Ggly = oper () Lpu(ol) L ) flalu)3(blo),
a b—a

where the inner product (-, -}, is defined on (C¥ @ C*) x (C¥ ® C4) by
ngL' Z.ul )Zf(ua
a

We may similarly define an inner product (-, ), on (CY ® CP) x (CY @ CB), and we will omit the
subscripts L, R when they are clear from context. Given a game matrix G, we define its adjoint Gt as
the unique matrix such that (f, Gg),, = (G'f,g)u, forall f € C¥*A and g € CV*5. Formally, if

G = Yo 1(0]1t) Tposa [1) (0] @ |a) (b] then GT = Zuv.u( |9) Lpsa [0) (] @ [b)(al.



Quantum strategies. Next we consider quantum strategies. A quantum strategy is specified by measure-
ments { A%}, for every u and {BL}, for every v, where in general a measurement is any collection of
positive semidefinite operators that sum to identity. For any state |'¥') EI this strategy gives rise to the family
of distributions
piw(a,blu,0) = (¥[4F © BYY) ]

This formula, dictated by the laws of quantum mechanics, corresponds to the probability that the players
obtain outcomes a, b when performing the measurements { A%}, { B2} on their respective share of [¥). One
can check that positive semidefiniteness of the measurement operators together with the “sum to identity”
condition imply that pyy (-, -[u,v) is a well-defined probability distribution on A x B. To a quantum
strategy we associate vectors

2|u yoAL e CUocer(c?)  and |B) =Y |o)b) @B e cMach o).
v,b

(Note that these definitions reduce to classical strategies whenever d = 1.) To express the success probability
of this strategy in a game G we extend the definition of the inner product (-, -), as follows.

Definition 2 (Extended Inner Product). We define the extended inner product
(s e cM e c(c?) x U ec e c(ct) — £(C) @ L£(C)
by defining (A, B)m,for |A) = Yo |u)|a) ® A% and |B) = Yo |u)|a) ® BE, as
L= L () L AL @ B
With this definition the success probability of the strategy (A, B) in G can be expressed as
VAL'(G, |A), |B)) := ||{A, (G®1d)B),||,

ZﬂuM®(ZMWOZ%Ww

u,a

u

ab—a

= max u(u,v) (YA @ BY|¥).
%) eCtCl||[¥) = 1; g o

We also define the entangled value of the game, VAL*(G), to be the highest value achievable by any quantum
strategy:

VAL*(G) = sup VAL*(G, |A),|B))

|A),|B)
= sup |[(A, (G®Id)B),],
|A),|B)
= sup Y u(uo0) Y. (¥|AL®BSY)
(A1} {BL},¥) w0 0
= sup Y u(u)) (Y|A7®Bj|Y), (4)
{AZ}{BS}[¥) u a

2The state |'¥) is often considered to be an integral part of the strategy. However it will be more convenient for us to not fix it a
priori. Given measurement operators for both players in a game, it is always clear what is the optimal choice of entangled state; it
is obtained as the largest eigenvector of a given operator depending on the game and the measurements (see below).

3The complex conjugate on A is not necessary, but for our purposes it is natural to include it in light of the proof of Lemma

9



where here we slightly abuse notation and denote

B, == ((ul(a| @ 1d)(G®1d)[B) = ) p(olu) }_ By (5)
v b—a
We note that in the above the supremum may in general not be attained as optimal strategies may require
infinite dimensions. In this paper we always restrict ourselves to finite dimensional strategies.
We end this section with the following well-known claim which shows that in some (though not all)
respects projection games are as general as arbitrary games. (See Appendix [A]for the proof.)

Claim 3. There exists a polynomial-time computable transformation mapping any two-player one-round
game G to a projection game G’ such that the following hold:

1—2(1—vaL(G')) < vaL(G) < VAL(G).

In particular, VAL(G') = 1 if and only if VAL(G) = 1, and 1 — VAL(G') = ©(1 — VAL(G)). Moreover,
for the entangled value we have the weaker bound

VAL*(G/) < HV‘;L(C;),

which implies 1 — VAL*(G’) = Q(1 — vAL*(G)).

3 Relaxations of the game value

In this section we introduce two relaxations of the entangled value VAL*(G) of a projection game G. Both
are quantum analogues of relaxations in [DS13]], and are used in the same way. The first relaxation, denoted
||G ||, is related to playing a “squared” version of G with two players Bob and Bob’ treated symmetrically. It
is defined in Section[3.1] and is easily seen to give a good approximation to VAL, as shown in the following
lemma (see Section [3.1] for the proof):

Lemma 4. For any projection game G,
VAL'(G)? < ||G|2 < vAL*(G). (©6)

The second relaxation, denoted VALY (G), is defined in Section It will be proven to be a good
approximation to || G||g and thus to VAL®, although this will require more work.

Lemma 5. For any projection game G,
IGI2 < vaLi (G) < o([IGI2), (7
for p(x) =1 — C(1 — x)° and some positive constants C,c > 0.

The proof of Lemma [5|is given in Section 4, The definition of VALY is motivated by the following
multiplicative property.

Lemma 6. For any two projection games G and H,

IG® Hllg < vaLL(G) - || HIlg. ®)

10



The proof of Lemmal[6]is given in Section
With these three inequalities in hand we easily derive the parallel repetition theorem, Theorem [I] as
follows. By repeated applications of (8)), we get

IG¥HE = 1G ® GHFHZ < VALL(G) - [GHF 2 < -+ < (vALL(G))".
Combining with () and (7)) we get
VALY (GH)? < [|GHHE < (vaLi (G))* < (o([IGIIE))" < (@(vaL*(G))),

where the last step follows from (6)) and the monotonicity of ¢.

3.1 The square norm

Definition 7. For a game G and a quantum strategy |B) write |G ® Id |B)||z := (|[(G®1dB,G ®
Id B) ||c0) 1/ and define

IGlle := SlugollG ®1d|B) e
B

where the supremum is taken over all quantum strategies |B) € cVlgcClBlg L(CY.

We note that ||-||g is clearly homogeneous and non-negative. Although we will not use it, one can
check that ||-||g is also definite, and hence a norm, by setting B} = Id for every v and any b such that
(G+G)(U,b), o) 7 0 (when it exists, and for an arbitrary b otherwise).

Lemma claims that |G ® Id |B) ||w gives a good approximation to the maximum success probability
in the game, when Bob uses the strategy specified by |B). We give a self-contained proof of the lemma
below, but before proceeding readers familiar with quantum information theory may find it interesting
to note that a direct proof of (9) can be derived using known properties of the pretty-good measurement
(PGM) [HW94, [HIST96]. We briefly indicate how, before proceeding to give a self-contained proof. Sup-
pose the second player’s strategy in G is fixed to |B). Upon receiving her question u, the first player
has to decide on an answer 4. She knows that the second player will receive a v distributed according to
p(-|u) and apply his measurement, obtaining an outcome b and resulting in the post-measurement state
Tro (Id ®+/BE|¥) (¥| 1d ®+/BL) on her system. From her point of view, she needs to provide an answer
a such that 77,,(b) = a. Only knowing u, her task thus amounts to optimally distinguishing between the

collection of states
pﬁ = vgu b; TI'Q(Id ®\/ BZ’T> <‘Y’ 1d ®\/ BZI;)
a

If, instead of applying the optimal distinguishing measurement, Alice applied the pretty-good measurement
derived from this family of states then it follows from [BKO2] that the players’ success probability would be
at most quadratically away from what it would be were Alice to apply the optimal measurement. Using the
explicit formula for the PGM one can verify that the resulting value exactly corresponds to |G ® Id |B)||2,
which proves the first inequality in (6).

Proof of Lemma[d] We prove the following inequality, from which (6] follows by taking the supremum over
all |B):

Ir‘}f)xVAL*(G,|A>,|B>)2 < |IGRId|B)|2 < max VAL’ (G, | 4), |B). )

11



For the second inequality, using that G is a projection game we note that for any d-dimensional strategy | B)
for the second player, (G ® Id)|B) is a valid strategy for the first player, hence

(G®1d)|B)|2 = [(G®1dB,G®IdB)yle < H‘LSXHMI(G@M)B)VH@ =H|1f’;l>xVAL*(Gz!A>z!B>)-

To show the first, we write the following:

(A, (G®1d)B)y |l
Y u(u)) AL®B,
u a

VALY(G, [A),|B)) = |

[ee]

1/2

1/2 __
PO AL N

<|Crwy Ao a
< 1(G 2 1d)B) s

where for the first inequality we used the following matrix version of the Cauchy-Schwarz inequality (see
Claim [20]in Appendix [A]for a proof):

H ) Ai®B;
i
and the last inequality follows using ), A% < Id for every u, which implies

| =g A
a

2

LS| Exea] |ERes], o)
1 1

[ee]

<|
<

) Id®A;
a

3.2 The relaxation VAL’ (G)

In order to motivate our definition of VAL’ , let us consider two projection games G, H and any quan-
tum strategy |B) for G ® H that achieves the optimal value ||G®H||2 in the square game. Letting x :=
|G®H ||/ || H||w we want to bound « by a quantity that depends on G and not on H. Consider the factor-
ization G ® H = (G ® I)(I ® H) where I is the identity operator; note that I can also be understood as
a game in which the two players are asked the same question and win if and only if they return the same
answer. The application of G ® H thus gives rise to a two step process

ATy €211 4) E5 By,

mapping |B) to |A) := (I ® H®1d)|B) and then mapping |A) to |A’) := (GRI®Id)|A). Letus view |B)
as a table with rows indexed by Vg X Bg and columns indexed by Vi x By, where Vg, Vg and Bg, By are
the question and answer sets associated with the second player in G and H respectively, and whose entries
are measurement operators, i.e. elements in E(Cd ). Then | A) is the result of applying H ® Id on each row
of | B) separately, and we apply G® Id on each column of |A) separately to get |[A’) = (GRIRId)|A).

It is instructive to view the strategy |B) as an assignment to each v € Vg and b € B of a row vector
({(v](b|®I®1d)|B) of dimensions | V|| By| (whose entries are again in £(C%)). Observe that for any o,
|By) = Y1 ((v](b|®I®1d)|B) is a quantum strategy for H, since for each question v’ for H, the sum over
answers b’ of

((o'|(¥'|®1d)|B,) = BY,, = Y B

0,0
b
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/
isYyy BZ’U, =YYy Bg’f}, = Id. In particular,

H®1d |By)||2 < ||H||2. We write

|Ag) =) ((v|(b|®@Ix1d)|A) (11)
b

and observe that it is equal to H® Id |B,), hence it satisfies |||Ay)|lg < ||H||w for every v. Thus the
ratio between ||GRIRId |A)||s and max,|| Ayl is at least k = ||GRH ||/ ||H|lw. As a result of our
observations the ratio x can be upper bounded in a manner that depends only on G and is independent of H.
Abstracting the set Uy x Apy associated with pairs of questions and answers for the first player in H as Q)
for some discrete set Qﬂ we are led to the definition of VAL’ (G) as the supremum of ||G ® In ® Id¢a |A) |2

ranging over vector quantum strategies | A) with norm ||A|[+ < 1 to be defined below.

Definition 8 (The relaxation VALY ). Let G be a projection game. Then

VALY (G) := sup sup |G ®In®Idea |A)| é,
Q| AecViecBloceL(cd)
lAll+<1

where the supremum is taken over all discrete measured spaces ().
The definition of || A||; is given by,

Definition 9 (Fractional Strategy and Vector Strategy). Let G be a projection game and () a discrete mea-
sured space. An element

1A) = Y [o)|b) @ AL e VI @ Bl @ £(C?)
u,b

is a fractional quantum strategy for G if for every v,b the matrix AZ is positive semidefinite and A, =
Y, Ab < 1d for every v. A vector quantum strategy is an element

1A) = ¥ |w)|Ao) € CecV & Clfl g £(Cf)

we)

such that each |A,) is a fractional quantum strategy. The norm of a vector quantum strategy is defined as
v w ©

With these definitions in place we prove Lemma [0] relating the square norm of a product of games to
VALY
+

Proof of Lemmal6] Let |B) be a strategy in the square game associated to G ® H. It follows immediately
from our observations above that |A) = I H® Id |B) is a vector quantum strategy for G (where the space
Q) = Uy x Ap, and the measure is the cartesian product of the probability measure y; on Uy and the
counting measure on .4y) whose norm is |||A)|[+ < ||H||. This means that

IGeH| = IGeH®1d|B)||g = |Gl d|A)| < VALY (G) - [|H]|3,

where the last inequality comes by observing that ﬁ |A) is a vector strategy with norm ||-||+- at most 1, so
[:3]

its value is at most VALY (G). This proves the claim. [

“4In order for the extended inner product (-, -) u to remain well-defined, we also need to equip (2 with a measure — here, it would
be the cartesian product of the probability measure y; on Uy and the counting measure on Ap;.
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4 Relating VAL' (G) to the square norm

In this section we prove Lemma|[5] which states that VAL’ (G) is a good relaxation of the square norm || G|
of a projection game and establishes the last step in our proof of the parallel repetition theorem, Theorem I}
We will also show that if G is an expanding projection game then one can take ¢ = 4 in the definition of
p(x) =1—-C(1—x)".

To prove the lemma, we need to show that the existence of a good vector strategy for the players in
the square game G'G implies that ||G|]é is large, i.e. there also exists a good (standard) quantum strategy
for the players. We will establish this by describing an explicit rounding procedure mapping the former to
the latter. The rounding argument is simpler in case G has the additional property of being expanding (see
Section for the definition), and we give the proof in that case in Section In Section we treat
the case of general projection games. In that case the rounding argument is more involved and relies on a
“quantum correlated sampling” lemma which is stated and proved in Section [5

In both cases, the starting point for the rounding procedure is the existence of a vector strategy |A> and
entangled state ]‘i’) satisfying inequality in the following claim, which is essentially a restatement of
the inequality “vAL (G) > 1 — .

Claim 10. Ler G be a projection game and 1§ > 0 such that VAL, (G) > 1 — 1. Then there exists a
discrete measured space Q), an integer d, a bipartite state [¥) € C? @ C? and a vector strategy |A) €
Cl% eVl e Bl @ £(C?) such that for every w and v,b, AL, > 0and Ay = ¥, AL, < 1d, and

EE Y (¥AL, @AY 9) > (1) max{ E(#[Au© Aul¥) ), (13)

wv'
W ot

where formally By Y pespy is shorthand for Y, p(u) Yp Y o w(0|u) (0" |t0) Yy s 0

Proof. By definition of VAL! , there exists a discrete measured space () and a vector strategy ]A) such that
I|A)[|+ = 1and [|[Idq ®G @ Id |A)||2 > 1 — 5. Recalling the definition of ||-||; (see Deﬁnition@) and of
|||l (see Definition , we may reformulate this statement as the inequality

HE E Y Al oAV,

wWont' ) S

> (1 —1n)max H EAue ® Ay
[ee] (% w

0]

Letting ]‘T’) be a state which optimizes the left-hand side gives (13). 0

In the following sections we show how any vector strategy |A) and state [¥) such that holds can
be rounded to a good strategy for the square game G'G, first in case the game G is expanding and then in
the case of an arbitrary projection game.

4.1 The expanding case

Let |A) be a vector strategy and |¥) a state such that (T3)) holds, and assume that G*G is expanding. Our
goal is to identify a quantum strategy |A) such that |G ® Id |A)[|2 > 1 — O(5'/¢), which by Claimwill
suffice to prove Lemma 5| for the case of expanding projection games.

Our first step consists in fixing a “good” value w € () and restricting our attention to the fractional
strategy |Ay) := ({w| ® I ®1d)|A) specified by the operators AL obtained from that w. Using that the
max is larger than the average, Eq. (13) implies

E( E Y <‘?|AT@®AZU,|‘?>) > (1-17) E(UECT’IAW®va|‘?>>. (14)

w o~
bt
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For the remainder of this section fix an «w such that holds for that w. The only property we will need
of the {Afw} in order to construct a good strategy in G'G is that they are positive semidefinite operators
which satisfy that inequality. (In contrast, for the non-expanding case, Eq. (I4) by itself turns out to be too
weak an inequality, and we must work with (13]).)

The definition of |A) almost imposes itself: the only “defect” of |A) is that it is only a fractional
strategy, meaning that for any question v the sum Awo = Yo Afw may not equal the identity, but due to the
“conditioning” on w could in general be much smaller. It is natural to define a re-normalized strategy as
follows. First, for every pair of questions v,v’ € ) and a choice of unitaries Uy, U, to be made later we
introduce the post-measurement state

|Tvv’> = mval/z X uv’Al/2|li[>' (15)

wv'

The state |¥,,/) is the post-measurement state that corresponds to “pre-conditioning” |‘i’> by applying the

binary measurements {va, Id —Aw} for the first player, {va/,ld —AM,/} for the second, and condi-
tioning on both of them obtaining the first outcome. In general the post-measurement state is only defined
up to a local unitary, and this freedom is represented in the unitaries U, and U,. Next for every question
v € V and answer b € B we define the measurement operator

Ab = U, A 12A0 AZLPud, (16)

where here A;},/ 2 denotes the square root of the pseudo-inverse of Apy = Yo Afw. Again, there is always a
unitary degree of freedom in the choice of the square root, and the unitaries U,, the same as in (I3)), represent
that degree of freedom. With this definition it is easy to verify that each Ag is positive semidefinite and that
Yo Azb) < Id; since we may always add a “dummy” outcome in order for the measurement operators to sum
to identity, { A%}, is a well-defined measurement and |A) := Y, [v, b) ® AY a valid quantum strategy in
G*'G.

Now suppose that, upon receiving their respective questions v and o, players in G'G were to mea-
sure their respective share of the (re-normalized) state |¥,,/) using the measurements given by the { A},
{AZ’,}Z,/ respectively. The probability that they obtain the pair of outcomes (b, b’) is given, up to normaliza-
tion by ||[¥oor) |72, by

~ ~1! A A /27-[- N ~_ ~ ~N_
(Your |AL @ AV ¥ow) = (¥ (Ao Up @ A2UL) (UyApa? AL, Age/? U

wv’

~_ A A _——1/2 ~ ~
QU A YA AZY2U) (WA @ Uy AY2)[9)

wv’ wv’

= ($|A @ AY|¥), (17)

perfectly reproducing the correlations induced by the fractional strategy |A,,) together with [¥). Thus
if it were the case that for all (v,v’), [¥,y) = |'¥), a vector independent of (v,?’), then the players
could use [¥) as their initial shared entangled state and perfectly emulate |A,,) using the quantum strategy
|A). Noticing that the term on the right-hand side of (T4), for our choice of w, is exactly |||¥40)||% the
equality when combined with (I4) would immediately show that the quantum strategy we have just
defined would achieve a value at least 1 — 7 in GG, implying |G ® Id||2 > 1 — 7 and proving Lemma

While it may unfortunately not be the case that the |¥,,/) are independent of (v, v), the main claim in
the proof of Lemma [5| will establish that they are close, on average. Introduce the density matrix

Eyovr |\va’> <‘Ijvv”
EU/INUII/ H |‘FU”U’”> H2 ’

o =

(18)
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which is simply the normalized mixture over a random pair of neighbors v ~ o’ (sampled as in GTG) of
the vectors [¥,,/). We will prove that ¢ is close, on average, to any of the (re-normalized) states |'¥,,) by
proceeding in two steps. First, in Lemma[I2]we will show that the unitaries U, can be chosen in such a way
that the states | ¥y, ) and | ¥, ) are close to each other, for arbitrary v”” but on average over neighboring
v ~ v'. (The proof of this claim will highlight the role played by the U,.) Second, in Claim|14| we will use
our assumption that G is an expanding game in order to obtain closeness for any choice of v, v’ and v”’. The
result is the following:

Claim 11. Let G be an expanding projection game and | A), |¥) a fractional strategy and state such that (T4)
holds. Then there exists a choice of unitaries Uy, such that, if |¥ ) and o are as defined in (13)) and (18)

respectively, then
| Tvv vv’

_ 1/4
T Bt |[[Forom) |12 H

E

v~/

Before giving the details of the proof of Claim [I1] we first show how it lets us conclude the proof of
Lemma 5] for the case of expanding games.

Proof of Lemma[5} expanding case. Let Al be the measurement operators defined in (T6)) from |A) and the
unitaries U, as promised in Claim Let ¢ be the density matrix defined from the same unitaries in (I8).
We evaluate the value achieved by this strategy in G'G. First note that

E %) [P = (1A, @ Aul¥)

v~/

< E(#1A,® A9 (¥ Ay @ Ay )
o~

IN

E[[[¥oo) 1%, (19)

where the second line follows from Claim and the third uses 2ab < a? + b*>. We can then evaluate

E Z (Ab &® Ab/ U) > E <\FUU’ ’Ag ® Ag, "Pm]/> _ . “YUU’ vv’ H
v~v! besh! o~ bob! EUHNUNI H “YU//UW> ||2 o~ EUHNUNI H |‘YU”UW ||

> <1va’ |AZ & AZ/ |Tvv’> . 0(171/4)

Tty Bor[[[Foren) |12
YA ® Ab Y
AL AU

o~ bl U” || |Tv//v//> ||
>1—-n- 0(771/4), (20)

where the first inequality uses that \A) is a strategy to bound Eyw Y 4 oop ATZ & Agi < Id, the second line
uses (T9) for the first term and the bound from Claim [T]for the second, the third follows from and the
last is (I4)), for the particular w that we fixed. To conclude, note that by definition

IGoId|A)|2=sup E Y (¥|Ab® AL[Y)

1Y) o~ S
> E Y Tr((A @A) o),
U™ s
which is 1 — O('/*) by €0). O
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In order for the proof of Lemma [5]to be complete it only remains to show Claim[I1] As outlined above,
we do this in two steps. The first step is stated as the following general lemma, which does not use the
expansion condition (we will re-use the lemma in the proof of Lemma 5] for the non-expanding case treated
in the next section).

Lemma 12. Let |®) be a permutation-invariant state, 0 < A, < Id, and v a distribution on V x V that is
symmetric under permutation of the two coordinates, such that

E (@[, © Ay|®) > (1- ) E(®[A; © Ao|®). @

v~
Then there exists unitaries U, such that, letting
——1/2
(D) =, A, '~ @ Uy AL?|®),

we have that for any 0" €V,

4

1/2
U,E]/ H‘¢UU//> - ‘CDU/ZJ”> ‘2 — O(’71/2)<EH\©W>H2) |HCI)U//U,,>

and ) X
CE [||P) — [@u0)[|* = O E|||9w) |

Proof. Let p be the reduced density of |®) on either subsystem. Let U, be a unitary such that
U, AV2p1/4 = pl/4 A1 /2t = (P1/4Avp1/4)1/2 22)
v v v

is Hermitian positive semidefinite; such a unitary can be obtained from the singular value decomposition of
Al/201/% Let X, be defined as

X, = U,AY?p"/* = p'/* AU}, (23)
By (22), X, is positive semidefinite. With this notation we have the following useful identities.
Claim 13. For every v,v' € V we have
Tr(Xp) = Tr((XoX3)?) = (P|A0 ® Ao|®) = ||| ®oo) || 24)

and o
Tr(X5X5) = (DA, ® Ay|D). (25)

Proof. For we use the definition of X, to write
Tr(X3) = Tr((XoX3)?) = Tr(Aup'2Ap'/?) = (B[4, © Ao|®),

where the last equality follows from Ando’s identity, Claim together with our assumption on |®) being
permutation-invariant. To show (23]), expand using the definition (23)

Tr(X2X2) = Tr(U, ALY 22 AL 2Uutu, AL2p /2 AL 2Ud)
— TT(AUPUZAU’PUZ)
= (P|A, ® Ay|®),

where the second equality follows from (22)) and the last from Claim[T9] O
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Now for any three v,v’,v”,

H|q)vv”> - ’cbv’v”>”2 (<q)vv”| - <q) v”|) (|q>vv”> |(I) ’v”>)
=

®|(AL2uf — AV2UL) (U,AY? — Uy AY?) @ AL2UL, U AL)2 @)
= TI'((XU - X ) ( /) UIIXUH)
< (Tr((Xo — Xy) ))“2( Tr(x4))"?, (26)

where the last inequality follows from Cauchy-Schwarz and the fact that the X, are positive semidefinite.
The first term on the right-hand side of (26)) can be bounded as

Tr((Xo — Xo)*) < Tr((X3 - X2)?)
= (P|Ay ® Ay|®@) + (P|Ay ® Ay |D) — 2(D|A, ® Ay |D),

where the first inequality can be found as e.g. Corollary 2 in [Kit86] and the equality follows from (24)
and (23). Going back to (26)), we obtain

2 5 1/2 2 1/2
CE [lI®) — [ @02 < (20 Ell|@o0) ) (1w |)

where the first inequality uses the assumption made in the lemma to bound the first term in (26)) and (24)) to
rewrite the second. This proves the first inequality claimed in the lemma. The second is obtained by taking
v" = v in (26)), and then the expectation over v ~ v’ as in the above. O

In case G is expanding, we can extend the bound from Lemma [12] to apply to any triple (v,v’,0"),
instead of only to neighbors v ~ v'.

Claim 14. Let 0 < A, < Id, v and |®) satisfy the assumptions of Lemma and in particular @21). Let
H=Y,,v(v,0)|v)(v]| be the “adjacency matrix” associated to v, D = Y, v(v)|v)(v| (where v(v) is
the marginal) and L = 1d —D~Y2HD Y2 the normalized Laplacian. Suppose that the second smallest
eigenvalue A\ of L is positive. Then for any v”,

1/2
B [[90) — @0 = 0225 (B0l ) )]
Proof. Fix av” andlet |p) = Y, \/v(v)|v)|Pyyr). Then

1
<4)|L ®Id |¢> = 505},‘||®vv”> - ’q)v’v”>||2- (27)

Decompose [¢) = [o1)|r) + [02)|2). where [o1) = Ly /7(0)[0), [¢1) = Lo v(0)|Dopr) and [oz) is

orthogonal to |v1). Since (v1|L|v1) = 0 we get from that

1

2.E @) = [ @) |17 = (02|(p2| L @1d [02) [p2) > Azllg2ll?,

where A5 is the second smallest eigenvalue of L (with A1 = 0). Applying the bound from Lemma[I2|we get

1/2
I2ll? = 0072231 ( Ef[|@w0) [*) * [10oror)
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hence

1/2
[19) = lon) 1) 2 = Ell[@op) = El@oe) 2 = 02251 ( E[l|P)[*) ™ [[|@uror)

The claimed bound follows by applying the triangle inequality. 0

The proof of Claim [IT]follows easily from Lemma|[I2]and Claim [I4]

Proof of Claim[I1} Applying Claim for v taken as the distribution of questions in G'G and |®), A as
|¥), AL, we obtain that there exists unitaries such that the states |¥,,/) defined from these unitaries as
in (T3) satisfy that, for any 0",

1/2
o) = [Fou)[* = 0012271 (E[[[¥ao)[IP) [ Furon)] (28)
In addition, from the second inequality in Lemma [I2] we get
o) = [¥ood |* = O0"?) E %), (29)
from which it also follows that
CE (1% I = BN} < B l¥ow) = ool ([ ¥0) | + oo} || o))
5 1/2 2 1/2
<2( B %) = %)) ( Ell1¥)|*)
o~ 4
1/2
=0(r?) (E[I¥=)]") ", (30)

where the first inequality uses |a> — b?| < |a — b||a + b| and the Cauchy-Schwarz inequality to bound
1o ) | < N Foo) |2 Forer) |12, the second uses Cauchy-Schwarz, and the last (29).
We now evaluate the overlap

2
‘ <\Fvv/ |Tv//v///>
E (Y You) =
va/< oo’ |U| vv’> om0 0 o E/H |1va’> ||2
U~

2 2
(E ¥ [?)* = 007/2) (El[¥:0)IP)
>
N E,|HTvv’>||2
V~U

> (1-0(1""?) E[¥ol?, 3D

where the second line follows from and the last uses (30). Applying the Fuchs-van-de-Graaf inequal-
ity [FvdG99],

E ||c— |\FUU’ vv’ H < ( v~v’ vv’|U|Tvv >)1/2
UNZ}/ EU//NU/N || |Tv//v/// || - v//NUN/ || |‘{Iv//v///> ||
=0(y"%),
where the second inequality uses (30) and (31). O
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4.2 Non-expanding games

Suppose G is an arbitrary (not necessarily expanding) projection game. In the game G'G the players are
always sent neighboring v ~ ©’. To mimic the proof strategy from the previous section, we would like
to enable the players to take advantage of the possibility of using an arbitrary entangled state in order to
initialize themselves in a state that is close to [¥,,). The difficulty is that this must be done “on the fly”,
as |¥,,) depends on the questions v, v’; indeed since G is not expanding there is no single state close to all
|'¥ ) that they could have agreed upon before the start of the game (as was the role of ¢ in the previous
section).

At this point it is natural to attempt to resort to the use of a so-called family of “universal embezzling
states” |Ty) € C? ® C. These states, introduced in [VHO3], have the property that for any given state |¢)
there exists a d and unitaries U, V such that U ® V|I'y) =~ |¢)|Ty) for some d’. Hence if both players have
a description of the target state [¥,,) they can easily generate it locally from the universal state |T';).

The difficulty, however, is that only the first player knows v, and the second knows v': how to make
them agree on which state to embezzle? Lemma [T2] suggests a solution. Applied to the present setting, the
lemma implies that

2

4

E [[¥) ~ o) = 002 E[[%20)

that is, all three states |¥yy), |¥op) and |¥,,/) are close for neighboring v ~ v’. Hence the first player,
knowing her question v, can compute a classical description of the state [¥.5); the second player can
compute a classical description of |'¥,r,). These two states are close to each other as well to the target state:
are these conditions sufficient for the two players to successfully embezzle a joint state close to either of the
three?

It turns out that, if one naively applies the embezzling procedure described in [vHO3] to this setting, it
can fail completely even when the states are arbitrarily close (see Section [5]for an example). Nevertheless,
in the next section we state and prove a “quantum correlated sampling lemma”, which extends the results
in [vHO3] to this “approximate” scenario. Based on that lemma it is not hard to adapt the proof from the
previous section, as follows.

Proof of Lemma[5] Let |A) be a vector strategy, and [¥) a state such that (T3) holds. Our goal is to identify
a quantum strategy |A) such that |G ® Id | A)||2 > 1 — O(5'/¢), which by Claim will suffice to prove
Lemma 3

We define a “re-normalized” vector strategy |A) € CI? @ CVl @ CIBl @ £(C?), from which we will
later obtain a quantum strategy |Aw> by making a good choice of w € (). As in the previous section, for
every w we may define states

T— /2 17216
“wiv’> = UuvAwo ® Uyt A ‘\P>/ (32)

wv’

where the U, are the unitaries given by Lemma as a consequence of (13) (replacing the max on the
right-hand-side by an average) the assumption of the lemma is satisfied, on average over w € (), for the
states |¥ ypr ). The lemma gives us the following bound:

E E [I[¥woo) — [Ywo) [P = O01'?) E E[[[¥woo) 1> (33)
o~ w v

In addition, for every w and question v € V let V.o and W, be the unitaries that are defined in Lemma
for the (re-normalized) state |'¥,,,,) and a choice of 6 = 7. By convexity the lemma gives us that

|vav> ’va’v’> 2/6
[Yooo) | ¥ worer) H ) (34

aE)v,\I,,_:;;/HV7W® Weoor [Taar) — [[[Fwoo) || [Fawro) [Tar) 1> = O<H |
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For any question v € V and answer b € I3, define measurement operators
Atbuv = Vatv (UWUA;}}/ZAZ}UA;%/ZUZJU ®1dy )va/ B(buv = Wc;r)v (UWUA;;/ZAZUA;;/zuLv @ 1dy )Wwv'

It is easy to verify that each A?_ and BY  is positive semidefinite, and that Y, A? , ¥, B? < Id. Since
we may always add a “dummy” outcome in order for the measurement operators to sum to identity, both
{AL,}, and {BY,,}, are well-defined measurements, and for every w, |Ay) := Y, |v,b) ® AV, and
|By) := Yoplv,b)® BY,, valid strategies for the players in G'G (we will soon show that at least one of
these strategies must be a good strategy for the square game).

We can first bound

E E [[Vaw @ Wew[Taar) = [I'¥woo) |7 ¥ o) [T} |

< EUE/"TM® Wwv”rdd/> - H|\vav>|‘7lwwvv>’rd/>”2 + EUE,,IH‘YW>H’2H\‘YW> - ‘\Pwvv’wz

:O<E E

w p~v!

|vav> |va’v/> H2/6 1/2
_ +0
e~ Tl ) +ou”

= O(E_E | Wunolll ™l [¥a) |/ [¥ane) — Ear) ) + O(12)

— O(T]l/6), (35)

where in the second line we used and the Cauchy-Schwarz inequality to bound the last term, and
for the first; in the third line we used that ||[¥4)|| < 1, and in the last we again applied (33) and the
Cauchy-Schwarz inequality. Note that

E[G®1d|A.)k|G®1d|Bu)ls = |E E Y AL, @ AL,

~ S

E E EBva@BZv/ o

) ‘ w p~o! bb!

>|EE ¥ AL, @B

wv'
oy S

where the last inequality follows from Claim[20] Hence

IGIE > ENIG®1d|Aw) sl G @1d |Bo) s

>EE )’ (Taw| AL, ® BYy | Taar)

w p~o!
bbb’

> E E Z H"wiv>||_2<vav’|uZ;vA&zl/2A2;vA;zlj/2Uwv

T wo~o!
~Y e

& Uwv’A_l/ZAZv’A;zlﬂ/zuZ)v’ ’vav’> - 0(771/12)

wv'

= B E Y [[[¥uwo)l| > (¥1AL, @ ALy [¥) — O(y12), (36)

U b

where the second line uses the definition of A?  and (33)) and the third is by definition of [¥ ). To
conclude, note that applying Markov’s inequality to we get that a fraction at least 1 — 171/ Sofv ~ 0
are such that -

E Y (¥A%, ® ALy ¥) = (1— 1) Ell[Yeu) 1%

wv’
w
bbb’
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where here we crucially used the max on the right-hand side of to allow ourselves use the same v on
the right-hand side as on the left-hand side. For any such v ~ o/, a fraction 1 — 11/3 of w € Q will be such
that L

Y (FAL, @ AL 1Y) > (1= ') [[[¥wo) |12

bl
For these v ~ v" and w the right-hand side of is at least 1 — n'/3 — O(5'/12), and their total weight
constitutes at least an (1 — 277'/3) fraction of the total. O

S The correlated sampling lemma

In this section we prove our quantum correlated sampling lemma.

Lemma 15. Let d be an integer and & > 0. There exists an integer d', and for every state i) € C? @ C?
unitaries Vy, Wy acting on C™, such that the following holds for any two states |p),|p) € C% @ C*:

IV @ W [Taar) = [9)[Tar)|| = O(max {6"*2,|[[y) — |9} ['/°}),
where here |T ;) o Y121~ Y/2]i)|i) is the (properly normalized) d-dimensional embezzlement state.

A variant of the lemma holding for the special case of ) = |¢) was shown in [vHO3], where the
“embezzlement state” |[';) was first introduced. It is not hard to see however that the construction of
the unitaries Vi, W, given in that paper does not satisfy the conclusion of Lemma For instance, if
lY) = /(1+¢€)/2|00) + /(1 —¢€)/2|11) and |@) = /(1 —€)/2]00) 4+ /(1 + €)/2|11)) then one can
check that for any ¢ > 0 the unitaries from [vHO3] will be such that ||V ® Wy |Tog) — [¢)|Ta)|| > 1/4.
This is due to the near-degeneracy in the spectrum of the reduced density matrices of |¢), |@); our proof
of Lemma |15|shows that this is essentially the only obstacle that needs to be overcome in order to obtain a
robust correlated sampling procedure.

Lemma [15| can be seen as a quantum analogue of Holenstein’s correlated sampling lemma [Hol09],
which played an important role in his proof of the classical parallel repetition theorem. There the players
receive as inputs a description of a distribution p, g respectively such that ||p — g||; = . Their goal is to
sample an element u ~ p for the first player, v ~ g for the second player, such that u = v with probability
1 —O(6). This task can be reproduced in our setting by giving the states |) = Y, \/p(u)|u)|u) to the
first player and |¢) = Y, /q(v)|v)|v) to the second. If the players run our procedure and then measure
their joint state in the computational basis they will obtain samples with a distribution close to p and g, and
moreover these samples will be identical with high probability...though our proof would require them to use
entanglement in order to do so!

We note that we have not tried to optimize the parameters appearing in the lemma. In particular, from
our proof one can verify that taking d’ = 20((@/9)?) in the lemma is sufficient, but this is probably far from
optimal. Indeed, the method in [VHO3] gives d' = d°1/9); it may be possible to achieve such a polynomial
dependence here as well.

Proof of Lemma([I5] We define the unitaries 74,, W,, implicitly through the following procedure, in which
two players Alice, Bob receive classical descriptions of two bipartite states |¢), |@) respectively, each of
local dimension d, as well as a precision parameter > 0. The unitaries le and W,, correspond to their re-
spective local quantum operations as described in the procedure. The players’ initial state consists of a clas-
sical description of the states |i), | @) respectively (where each coefficient is specified with poly log (6, d 1)

22



bits of precision), a large supply of private qubits initialized in the |0) state, a large supply of shared EPR
pairs that they will use as classical shared randomness, and an embezzlement state |T ;) for some large
enough d’.

1.

. Using shared randomness, the players jointly compute a sequence Ty, . . ., Tx+1, Where K =

Let d be the local dimension of ) and |¢), & the precision parameter given as part of the input, and
77 > 0 a small parameter to be specified later.

[ log(d/é) -|
log(1+7) I’
as follows. They set 79 = 1, tx41 = 0, and for k = 1,...,K they jointly sample T uniformly at

random in the interval [(1 4 7) 7%, (1 4+ 7)~*1).

. Both players individually compute a classical description of the same (normalized) state

K
80) o Y wlk, k) ag|Pa) an,
k=0

where |®;) is the un-normalized maximally entangled state on C? ® C?. Let N = [(26d ¥ t7) ~2].
Alice and Bob jointly generate N copies of |&y), which they can achieve using the universal ambez-
zling procedure from [vHO3] provided d’ is large enough.

. Alice (resp. Bob) computes the Schmidt decomposition |p) = Y_; A;|u;) |u}) (resp. |@) = Y_; uilvi)|0)).

She sets Sy (resp. T) as the set of those indices 7 such that A; € [Tyq, k) (resp. Ui € [Tir1, Tc))s
sk = |Sk| (resp. tx = |Tk|), and Py (resp. Q) the projector on the the span of the |u;) for i € Sy
(resp. |v;) fori € Ty).

. Alice measures her share of the first copy of |§o) using the two-outcome measurement { P4, Id —Py4 }

where Py := Y |k) (k| ® Py. Bob proceeds similarly with Pg := Y |k) (k| ® Q. If either of them
obtains the first outcome they proceed to the next step. Otherwise, they repeat this step with the next
copy of |&p) (assuming, but not knowing, that the other party also starts over). If all copies have been
used they abort the protocol.

Alice (resp. Bob) controls on the second register of |&o) to erase |k) in the first register. (This is
possible since the Py (resp. Qy) are orthogonal projections.) The players discard all qubits but the
remaining register of |{p).

Throughout the analysis we assume without loss of generality that & > |||¢) — |@)||?>. We will show that
with probability at least 1 — O(6'/12) the procedure described above results in a shared state between Alice
and Bob that is within trace distance O(5/12) of both |¢) and |¢). Our first claim shows that, based on
the T, the players can each compute a discretized version of their inputs that both have (a slightly re-scaled
version of) the T; as Schmidt coefficients.

Claim 16. Define

_CZTkZ|uZ Yul)  and —C’ZTkZ]vl NCAY

1€Sk €Ty

where the Ty, Sy and Ty are as defined in the protocol and C,C'" are appropriate normalization constants.

Then

1+n)t<cc <1, (37)
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and

max {[|[y) — [)[%, [llg) — @)} = O(n). (38)

Proof. We have C™2 = Y, T,fsk which by definition of Sy satisfies
1=) A7 < Yowise < ) (1+1)°AF < (1+n)%
i k i

A similar calculation holds for C’, proving (37). Next we bound the first term in (38), the second being
similar. Using the definition of |¥) and we have

) = 2 < 3 ) (Ai = w)* +O(n)

k i€Sy
1
< 7 (1———) +0(y)
;iezszk k( 1+;7> T
=0O(n)

O]

Our next claim shows that the subspaces Py, Qr computed by the players are close, in the following
sense.

Claim 17. The following holds with probability at least 1 — O((Sl/ 677_1/ 3) over the choice of the T:

Y @ Te(PQr) = 1—0(8Y6y71/3). (39)
k

Proof. Using Claim and ||[9) — |@)||* < & we deduce that [(P[¥)|> = CC'Lip wrTr(PQu) =
1 —O(#). To prove the claim we bound the contribution of those terms for which k # k’:

Y twTr(PQr) = ) wte Y, ), |<ui\0j>\2

k£k! kK €Sy jETy
<+ X Al + Y Al ),
k#k/, iESk,jETk/ k#k’,Z,iESk,]‘ETk/
IN/Ail =1 AP =E I/Ail =i/ AP <g

(40)

where ¢ > 0 is a parameter to be fixed later. We bound each of the two terms inside the brackets in (0)
separately. The first term is at most

2 |Ai — Vj’Z )
L awlwelfs L P )
] ij
/Al = ui/ A= IAi=pil> =i

<t Z Ai = il (uilog) |2
L]

<2 -2(yle))
<o L,
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To bound the second term in (0), note first that provided ¢ is at most a small constant times # necessarily
k' = k+1ork’ = k — 1; our choice of ¢ will satisfy this condition. Suppose k' = k — 1, the other case
being similar. Fix 7, j such that |\/A;/pj — \/;/Ail* < &. This condition implies Ai — pjl* < &uidi <
&(1+ 1) 7372, Since T is chosen uniformly in an interval of length 7;17(1 4 7)1, the expected fraction of
pairs (7, ) such that such that |\/A;/p; — /i /Ail* < & and A; < 7 < pjis at most O(y/Z/17). Hence,
on expectation over the choice of the 7. we have

) Aipj| (uilo) > < O(/En ™) Z)‘P‘] (uilo) 2 = O(v/En ™).

k#k’, iGSk,jGTk/

[\/Ail =1/ AP <E

Choosing ¢ = (77)2/3, we obtain that (39) holds, on expectation over the choice of the T, with a right-hand
side of 1 — O(6'/3;72/3). (The condition that ¢ < 7 is equivalent to § < 7'/3, which we may assume
holds without loss of generality, as otherwise the bound in the claim is trivial.) The left-hand side is at most
1, and applying Markov’s inequality proves the claim. 0

Our last claim analyzes the outcome of the sampling procedure, proving the lemma.

Claim 18. Let |¢), |@) be such that |||p) — |@)||> < 6, and set 1 = 8'/* With probability at least
1 — O(8"/12), the sampling procedure described above terminates with Alice and Bob in a shared state |&)
such that |||&) — |} ][> = O(6'/*2).

Proof. Suppose first that holds and that Alice and Bob both proceed to the third step synchronously. In
that case, at the end of the procedure their joint state is

&) =C"Y e Y. (ulvj)|ui)|vj),

K ieSpieTy
where the normalization constant C” satisfies
()" ZTk Yo [(uilop* = Y Te(PeQk) = 1—O(n + 62 72/3)
lESk,jGTk k

by Claim|[17] We can thus evaluate the overlap of |¢) with |®) as
@y >y 1 Y, o) = 05"y 727%)
k i€SkjET;
—1— 0(51/617—1/3),

where for the first equality we used orthogonality of the |u;), and the last again follows from Claim

Next we compute the probability that in the second step Alice and Bob both obtain the first outcome of
their respective POVM in the same iteration. The probability that Alice alone obtains a successful outcome
is Y s/ (A 2) = (14 ©(17))(d 2 72) ! by (7). The same holds for Bob. With probability at least
1 — 42, both of them obtain a successful outcome before the number N of copies of |&,) runs out. Moreover,
the probability that they simultaneously obtain the first outcome is

(dZTﬁ)_lzrszr(Pka) > (1—0(8Y6y71/3)) dZT
k k

by Claim Hence the probability that they simultaneously proceed to the third step of the protocol is at
least 1 — O(61/6~1/3). Choosing 77 = 6'/4 proves the lemma. O

O]
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A Auxiliary claims

Claim 19. Let X € L(C%), Y € L(C¥) be two operators and |¥) € C? @ C? a bipartite state with
Schmidt decomposition |¥) = Y ; Ai|u;)|v;), where the A; are non-negative reals. Then

(¥|X® Y|¥) = Tr(XKYTK"), (41)

where K = Y_; Ai|u;) (v;| and the transpose is taken in the bases specified by the |u;) and |v;). In particular,
if |u;) = |v;) for every i, K is positive semidefinite and evaluates to Tr(XKYTK).

Proof. The proof follows by direct calculation, expanding the left-hand side of (1)) using the Schmidt
decomposition of [¥) and the right-hand side using the definition of K. O

Claim 20. For any d and operators A; € L(C%), B; € L(C?),
| CAies |LBies
i i

Proof. Let |¥) € C% @ C¥ be a unit vector with Schmidt decomposition |¥) = ¥; A;|u;)|v;) and K =
Y. Ai|ui) (v;]. Using cyclicity of the trace,

2
o i

.

Tr(AKBIK') = Tr<((K*K)*“‘*K*Ai(KK*)l/‘*)((KK*)*”‘*KBJ(K*K)”‘*)),
and the Cauchy-Schwarz inequality for the trace inner-product gives
ITr(AKBIK|* < Tr(AVKKTAIVKK) Tr(Bf VKTKBVKK). (42)
Using Claim[T9 we may then write
(¥ (LA B [¥)| = | L Tr(AKBIKY) |
; ;
< Y0 \/Te(AVKKF ATVKKT) /Te (B VKTKB,VKTK)

i

< (ZTr(Ai\/KK*A:T\/KK*))l/Z ( ZTr(BJ\/K+KBi\/K+K))1/2

1/2 1/2
] c W

= [l (CA @A) Y| |oeel (LB @ B ¥e)

where for the first inequality we used (42)), the second follows from the Cauchy-Schwarz inequality, and for
the last we introduced [¥1) = Y; Ai|u;)|u;), [¥r) = ¥ Ai]vi)|v;), and we used Claim [19|to re-write the
expressions. Since (@3) holds for any |'¥), the claim is proved. O

We next prove Claim 3] introduced in Section[2.2]
Claim [3| There exists a polynomial-time computable transformation mapping any two-player one-round
game G to a projection game G’ such that the following hold:

1—2(1—vaL(G')) < vaL(G) < VAL(G).
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In particular, VAL(G') = 1 if and only if VAL(G) = 1, and 1 — VAL(G') = ©(1 — VAL(G)). Moreover,
for the entangled value we have the weaker bound

VAL'(G') < 1+vars) +V/;L (G),

which implies 1 — vAL* (G') = Q(1 — vaL*(G)).

Proof. Let G be a game with (without loss of generality disjoint) question sets U, V), answer sets A, B,
distribution on questions  and acceptance predicate V. Let G’ be the projection game corresponding to
the following scenario. The referee selects a pair of questions (u,v) at random from p, which it sends to
the second player, and then sends either u or v to the first player, each with probability 1/2. Formally, G’
is defined by question sets U’ = UUV, V' = U x V, answer sets A’ = AUB, B = A x B, and a
distribution p" given by u'(u, (u,v)) = w'(u,v)/2, W' (v, (u,v)) = u'(u,v)/2, and 0 otherwise. For any
(u,v) and (a,b) let 7T, (;, ) be such that 7, (,, .y (a,b) = a and 71, () (a,b) = bif V(a,b,u,v) =1, and
there is no valid answer for the first player if the second player’s answers are such that V (a,b, u,v) = 0.

Then clearly G’ is a projection game. Let |f),|g) be classical strategies for the players such that
VAL(G, |f),|g)) = VAL(G). Consider the strategy (|f’),|¢’)) for G’ in which |f") answers as |f) to
questions u € U and as |g) to questions v € V, and |g’) answers as (| f), |¢)). Then whenever the strategy
(1), |g)) provides answers to a pair of questions (1, v) that satisfy the predicate V the strategy (|f), <))
gives answers to both (1, (#,v)) and (v, (1,v)) that are accepted in G’, hence

VAL(G') = VAL(G, |f'), ¢')) = VAL(G, |f), Ig)) = VAL(G).

Conversely, let (|f'),]g’)) be a strategy for G’ such that VAL(G') = VAL(G/, |f’),|¢’)). Decompose |f’)
into a pair of strategies |f),|g) in G, depending on whether the question is u € U or v € V. The pair
(1), |g)) will give a rejected answer to a pair of questions (1, v) only if (|f'), |¢’)) gave a rejected answer
to at least one of the questions (u, (1, v)) and (v, (1,v)) in G’. In the worst case the (1 — VAL(G', | f), |g)))
probability that (|f’),|g’)) provides rejected answers in G’ is, say, fully concentrated on questions of the
form (u, (u,v)). Hence

VAL(G) > VAL(G, |f),Ig)) = 1 =2(1 = vAL(G',|f'),18))) =1 —2(1 = VAL(G')).

Finally, let (|A’), |B’)) be a pair of quantum strategies such that VAL*(G') = vaL*(G/, |A’),|B’)). To
|A) are unambiguously associated measurement operators { A%}, for every u € U, and { AL}, forv € V.
Hence

1

(a,b):V(abuv)=1 ©
L (A7 = AD) 172 — 1/2
<|.Ez (A2 + Ab) @ (A% + AY) ‘ E Y BhoBY
(a,b):V(a,bup)=1 e (a,b):V(a,buv)=1 0
1 1 _ 1/2
<(z+alB L @mea| )"

(a,b):V(a,b,u,v)=1

where the last inequality uses the triangle inequality for the operator norm and the fact that || }-; X; ® Yj||co =
| X2 Yi ® Xi||eo for any X;, Y;. Hence the pair of strategies (|Ajy), |A}y)) for G achieves a value at least

VAL (G) > VALY(G, [Ap), [A)) > 2VAL* (G')? —1,

as claimed. OJ
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