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Abstract

Many load balancing problems that arise in scientific computing applications boil
down to the problem of partitioning a graph with weights on the vertices and costs
on the edges into a given number of equally-weighted parts such that the maximum
boundary cost over all parts is small.

Here, this partitioning problem is considered for graphs G = (V,E) with edge costs
c : E → R+, that have bounded maximum degree and a p-separator theorem for some
p > 1, i.e., any (arbitrarily weighted) subgraph of G can be separated into two parts of
roughly the same weight by removing a separator S ⊆ V such that the edges incident
to S in the subgraph have total cost at most proportional to (

∑

e c
p
e)

1/p, where the
sum is over all edges in the subgraph.

For arbitrary weights w : V → R+, we show that the vertices of such graphs can
be partitioned into k parts such that the weight of each part differs from the average
weight

∑

v∈V wv/k by at most (1− 1

k )maxv∈V wv, and the boundary edges of each part

have total cost at most proportional to (
∑

e∈E c
p
e/k)

1/p + maxe∈E ce. The partition
can be computed in time nearly proportional to the time for computing separators S
for G as above.

Our upper bound is shown to be tight up to a constant factor for infinitely many
instances with a broad range of parameters. Previous results achieved this bound only
if one has c ≡ 1, w ≡ 1, and one allows parts of weight as large as a constant multiple
of the average weight.

We also give a separator theorem for d-dimensional grid graphs with arbitrary edge
costs, which is the first result of its kind for non-planar graphs.

1 Introduction

We consider the problem to partition a weighted graph into a given number of parts subject
to the constraint that the weight of each part differs from the average part weight only by
a relatively small quantity. The objective is to minimize the maximum boundary cost over
all parts, where the boundary cost of a part is the the total cost of the edges with exactly
one endpoint in the part.

This problem naturally arises as a load balancing problem in scientific computing ap-
plications, where one wants to solve a large-scale problem given by a set V of jobs on a
parallel computing system with k identical machines. The weight wu is proportional to
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the time a machine takes to process job u ∈ V . However, job u may depend on other jobs
v ∈ V . For each such dependency the graph G = (V,E) contains an edge e = {u, v} ∈ E.
If job v is not scheduled on the same machine as job u then a cost ce is induced on the
machines that handle jobs u and v. The cost ce reflects the overhead for the communication
needed to resolve the dependency among jobs u and v. How the makespan of a schedule
increases under large communication costs, depends on the specific design of the consid-
ered parallel computing system. In general, one requires from a good schedule that the
weights of the jobs are as equally distributed among the machines as possible and that the
maximum communication cost over all machines is small. So this load balancing problem
corresponds to the graph partitioning problem from above.

For example, consider the problem of large-scale climate simulation, where the surface
of the earth is subdivided into many triangular regions. For each region, there is a job in V
to simulate the weather in this region for a period of time. Of course, the simulations for
neighboring regions depend on each other. So if jobs of neighboring regions are scheduled
on distinct machines, one might have to interchange considerable amounts of data between
the machines causing an increase of the makespan. This example also illustrates the use
of weights and costs. Even if all regions have about the same area, the time for simulating
the weather in these regions might differ tremendously depending on day-time, desired
accuracy, et cetera. The degree of dependency among neighboring regions might differ in
a similar manner.

Our aim is to characterize graph classes that, even for worst possible weights, allow
k-way partitions that are good in the sense above, i.e., have equally-weighted parts and
small boundary costs. We shall see that a “well-behaved” graph class allows good k-way
partitions if and only if it allows good 2-way partitions, i.e., it has a separator theorem. In
this, we can predict the scalability of the mentioned scientific computing applications.

Our results imply that there is no inherent trade-off between the weight-balancedness of
a partition and its boundary costs. In particular, any partition, with weight of each part at
most proportional to the average, can be transformed into a partition with almost equally-
weighted parts such that the maximum boundary cost increases by at most constant factor,
essentially.

Notice that the “quality” of a partition could also be measured by the average boundary
cost instead of the maximum boundary cost. One might ask whether there are considerably
better upper bounds for this measure than for the maximum boundary cost. We answer
this question in the negative.

Previous Work and Contributions

Much work has been done on worst-case guarantees for graph partitioning problems. In a
seminal article, Lipton and Tarjan [5] established a separator theorem for planar graphs,
asserting that every n-vertex planar graphs can be separated into two parts of size at most
2n/3 by removing O(n1/2) vertices. Further separator theorems exist for graphs with an
excluded minor [1] and for d-dimensional well-shaped meshes [7, 9, 6], where for the latter
O(n1−1/d) vertices can be removed instead of O(n1/2). More generally, a graph is said to
have a p-separator theorem (with respect to unit costs) if any induced subgraph can be

separated into two parts of about the same weight by removing O(n
1/p
0 ) vertices, where n0

is the number of vertices in the subgraph.
Simon and Teng [8] addressed the problem to partition a graph into k ≥ 2 parts of
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weight at most proportional to the average, by removing edges from the graph. They
showed that for bounded-degree graphs with a p-separator theorem such a partition can be
achieved by removing O(k1−1/pn1/p) edges. So for unit edge-costs,the average boundary of
the partition is at most proportional to (n/k)1/p.

Kiwi, Spielman and Teng [4] were the first to give bounds on the maximum boundary
cost instead of the average boundary cost. For unit-weights and unit-costs, they show that
bounded-degree graphs with n vertices and p-separator theorem can be decomposed into
k parts such that the weight of each parts is O(n/k) and the maximum boundary cost
is at most proportional to (n/k)1/p. They also give bounds for partitions with maximum
weight at most (1 + ǫ) · n/k and for the case of arbitrary weights. However, in these
cases their bound on the maximum boundary cost increases by a factor (1/ǫ)1−1/p and
(log(k/ǫ2)/ǫ)2−2/p, respectively. We show that this asymptotic increase of the maximum
boundary cost can be avoided. More specifically, our bounds for the weighted case are
the same as for the unweighted case, and in our results there is no trade-off between
balancedness and boundary costs.

In Appendix A.3 we show that the obtained worst-case bounds on the maximum bound-
ary cost are optimal with respect to the chosen parameters.

Strict weight-balancedness. It seems new to allow the constraint that the weight of
each part may differ from the average weight of a part by at most k−1

k maxv∈V wv. Notice
that this guarantee on the weight of the parts is the same as of an algorithm that assigns
each vertex greedily to a part, i.e., a greedy bin-packing algorithm. However, in contrast
to our methods, such a greedy algorithm will in general create huge boundary costs. In
Section 5 we present a novel “shrink-and-conquer” algorithm that transforms any partition
with loosely balanced weights into a strictly weight-balanced partition while maintaining
the bounds on the maximum boundary cost. For the conquer-phase, a greedy bin-packing
procedure is used. But our “shrink-and-conquer” approach shall ensure that this packing
procedure touches every part only constantly often and therefore the boundary costs do
increase only slightly in a conquer-phase.

Arbitrary edge costs. If one allows arbitrary costs c : E → R+ on the edges instead
of unit costs, then only the separator theorem for planar graphs [2] was known to extend
to this case. Any bounded-degree planar graph can be separated into two parts of about
the same weight by removing edges of cost O((

∑

c2e)
1/2). In Section 6 we give a separator

theorem for d-dimensional grid graphs. Every d-dimensional grid graph can be separated
into two almost equally-weighted parts by removing edges of cost at most proportional

to (
∑

c
d/(d−1)
e )1−1/d · log1/d φ, where φ := maxe ce/mine ce is the fluctuation of the edge

costs. We think that the logarithmic factor in our grid separator theorem is superfluous.
Moreover, we conjecture that many graph classes with separator theorem for unit costs
also have a separator theorem for arbitrary c.

Assuming such separator theorems, we can extend the bounds on the maximum bound-
ary cost of k-way partitions to the case of arbitrary edge costs. For this generalization,
we utilize multi-balanced partitions (cf. Section 3), i.e., partitions that are simultaneously
balanced with respect to several weight functions. Multi-balanced partitions were implic-
itly considered by Kiwi, Spielman, and Teng [4]. Their idea is to use recursive bisection
where each separator divides the vertices evenly with respect to all weight functions. Such
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separators are increasingly difficult to find when the number of weight functions grows
larger. Their approach gives the same guarantee as ours only if there are at most two
weight functions. We use, instead of ordinary recursive bisection, a generalization thereof,
which allows to balance the partition with respect to the weight functions one by one. This
approach makes it possible to handle an arbitrary number of weight functions.

Notation

In this work, all considered graphs are assumed to be finite, undirected, and without self-
loops or parallel edges. A graph G = (V,E) has size |G| := |V |+ |E|. For a subset U ⊆ V
of the vertices, δ(U) := {e ∈ E | |e ∩ U | = 1} denotes the cut induced by U , or the set of
boundary edges of U . We let G[W ] := (W,E(W )) be the graph induced by a vertex set
W ⊆ V in G, where E(W ) := {e ∈ E | e ⊆ W} is the set of edges running in W . For all
other graph notations, we refer to any standard text book on graph theory or algorithms.

Let f : X → R+ be a function on a finite domain X. If not ambiguous, we write
fx := f(x). For a subset S ⊆ X, we define f(S) :=

∑

s∈S fs. For p > 1, the p-norm of

f is given by ‖f‖p := (
∑

x∈X fp
x)1/p. In the limit, we have ‖f‖∞ = maxx∈X fx. Hölder’s

inequality states that
∑

x∈X fxgx ≤ ‖f‖p·‖g‖q for functions f, g : X → R+ and p, q > 1 with
1
p + 1

q = 1. We denote the restriction of f to S ⊆ X by f|S : S → R+ with f|S(x) := f(x)
for all x ∈ S. The function on domain X that is identical to 1 is denoted by 1X : X → {1}.
When adding two non-negative function f and g with respective domains X and Y , we
implicitly extend f and g to the domain X ∪ Y with f|Y \X ≡ 0 and g|X\Y ≡ 0. Then we
can define f + g : X ∪ Y → R+ by (f + g)(x) = f(x) + g(x). When the domains X and Y
are disjoint we call the sum f + g direct and write sometimes f ⊕ g.

We write f = Od(g), f ≪d g, or g = Ωd(f) for expressions f and g if |f | ≤ C · |g| for
some constant C that might depend on a parameter d.

2 Min-Max Boundary Decomposition Problem

In the following we provide a formalization of this problem and state our main results. The
decomposition problem is formulated in terms of vertex colorings instead of partitions, since
we find this notation more convenient.

Definition 1 (Strictly Balanced Colorings). Let k be a positive integer andG = (V,E)
be a graph with edge costs c : E → R+ and vertex weights w : V → R+.

A k-coloring χ : V → [k] of G is strictly (w-)balanced if the weight of each color class
χ-1(i) := {v ∈ V | χ(v) = i} differs from the average weight of a color class by no more
than a (1− 1

k )-fraction of ‖w‖∞, i.e., when we have

max
1≤i≤k

∣

∣

∣

∣

w(χ-1(i))− ‖w‖1
k

∣

∣

∣

∣

≤ (1− 1/k) · ‖w‖∞. (1)

The maximum boundary cost of a coloring χ of G is defined as the maximum cost of the
boundary edges δ(χ-1(i)) of a color class χ-1(i), formally,

‖∂χ-1‖∞ := max
1≤i≤k

c(δ(χ-1(i))).

(The strange symbol ‖∂χ-1‖∞ will be consistent with our further notation.)
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Notice that strictly balanced coloring are as weight-balanced as possible for many pa-
rameter choices. More precisely, for all choices of k and ‖w‖∞, there are infinitely many
choices of ‖w‖1 such that equality holds in (1) even for the most weight-balanced coloring
of some instance with the chosen parameters.

For the applications mentioned in Section 1, it is desirable to know which graphs allow
strictly balanced k-colorings of small maximum boundary cost even if the weights of the
vertices are chosen adversarial.

Definition 2. The min-max boundary (k-)decomposition cost of G with edge costs c : E →
R+ is the minimum maximum boundary cost over all strictly balanced k-colorings of G
with respect to worst possible weights, formally,

∂k
∞(G, c) := sup

w : V →R+

min
χ
‖∂χ-1‖∞,

where the minimum is over all strictly w-balanced k-colorings χ of G.

In our main theorem we will upper bound ∂k
∞(G, c) in terms of a parameter related to ∂2

∞

that is subgraph-monotone, i.e., it does not increase when going to (induced) subgraphs.
Note that the trivial subgraph-monotone version of ∂2

∞, namely

max
W⊆V

∂2
∞(G[W ], c|E(W )),

is pointless, since it gives no information about how large the costs for decomposing G[U ]
are compared to the edge costs c|E(U) in this subgraph. For a meaningful parameter, we
need to relate the decomposition cost of a subgraph to the costs of its edges.

The following definition formalizes this idea.

Definition 3 (Splitting Sets, p-Splittablity). For any splitting value w∗ with 0 ≤
w∗ ≤ ‖w‖1, a vertex set U ⊆ V is said to be w∗-splitting if |w(U) − w∗| ≤ ‖w‖∞/2. The
(boundary) cost of U is ∂U := c(δ(U)).

Now the p-splittability of a graph G with edge costs c is the least number σp(G, c) such
that for every induced subgraph G[W ], all weights w : W → R+ and splitting values w∗,
there exists a w∗-splitting set U ⊆W with boundary cost ∂WU ≤ σp(G, c) · ‖c|W‖p, where
∂WU is the boundary cost of U in G[W ], and c|W denotes the restriction of c to the edges
of G running in W . We write σp := σp(G, c) when G and c are understood.

We remark that if instance (G, c) is well-behaved, i.e., G has bounded maximum degree
and c(u, v) = Ω(c(u, v′)) for all edges {u, v}, {u, v′} ∈ E, then it holds

σp(G, c) = Θ(max
W⊆V

∂2
∞(G[W ], c|E(W ))/‖c|E(W )‖p)

(cf. Corollary 39). So we can indeed view parameter σp as a subgraph-monotone version
of ∂2

∞. However, it is much more convenient to work with splitting sets instead of strictly
balanced 2-colorings.

Our main theorem gives an upper bound on the min-max boundary decomposition cost
in terms of the p-splittability and the maximum c-weighted degree ∆c := maxv∈V c(δ(v)).
The time for computing k-colorings that achieve the bounds of the theorem is almost the
same as for computing cheap splitting sets in the graph.
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Theorem 4. Let G be a graph with edge costs c. Then for all k ∈ N and p > 1,

∂k
∞(G, c) = Op(σp · (k−1/p · ‖c‖p + ∆c)).

Moreover, suppose one can compute splitting sets of cost at most s·‖c|W‖p in time t(|G[W ]|)
for all subgraphs G[W ], weights w and splitting values w∗, where t(n) ≥ n is a linear
function in n. Then, there exists an O(t(|G|) · log k)-time algorithm to compute strictly
balanced k-colorings of G with maximum boundary cost Op(s · (k−1/p · ‖c‖p + ∆c)).

In the remainder of this section we draw a connection between the above result and the
more common notion of “separator theorems”, which were already mentioned in Section 1.
The connection also allows us to formulate a result asserting the tightness of our upper
bound on the min-max boundary decomposition cost.

In the following, we will assume that the considered instances (G, c) consisting of a
graph G = (V,E) and edge costs c : E → R+ are well-behaved, i.e., the maximum degree
∆(G) is bounded and the local fluctuation c(δ(v))/mine∈δ(v) c(e) at each vertex v ∈ V is
bounded. In Appendix A.3 we discuss to what extend this assumption is necessary.

Before formulating our results, we need to introduce a few notions (cf. Appendix A.3).
A subset S ⊆ V of the vertices is a balanced separator with respect to weights w : V → R+

if all components of G[V \ S] have weight at most 2
3‖w‖1. The cost of S is the total

cost
∑

s∈S c(δ(s)) of the edges incident to S. Then, a well-behaved instance (G, c) has a
p-separator theorem (cf. Definition 35) if for all W ⊆ V (G) and weights w : W → R+ there
exists w-balanced separators in G[W ] of cost O(‖c|W ‖p). Since well-behaved instances
with p-separator theorem have constant p-splittability (cf. Lemma 37), our main theorem
translates to graphs with separator theorems.

Roughly speaking, the theorem below shows that a well-behaved graph class, which is
closed under a reasonable “similarity” relation, has small min-max boundary k-decomposition
cost if and only if it has a p-separator theorem for some p > 1.

Theorem 5. Let (G, c) be a well-behaved instance. If (G, c) has a p-separator theorem,
then we have for all k ∈ N,

∂k
∞(G, c) = Op(‖c‖p/k1/p + ‖c‖∞).

If there exists a weight function w : V → R+ with ‖w‖∞ ≤ ‖w‖1/4 such that all w-
balanced separators of G have cost α · ‖c‖p, then for infinitely many k ∈ N there exist
instances (G̃, c̃) “similar” to (G, c) with

∂k
∞(G̃, c̃)≫ α · (‖c̃‖p/k1/p + ‖c̃‖∞).

In the theorem above, instance (G̃, c̃) is similar to (G, c) in the sense that G̃ is the
union of k/4 disjoint isomorphic copies of G, and c̃ assumes for an edge in G̃ the cost
of the corresponding edge in G. We remark that there are weights w̃ for G̃ such that
every k-coloring χ of G̃ with roughly balanced weights, i.e., maxi w̃(χ-1(i)) ≤ 2‖w̃‖1/k, has
average boundary cost at least proportional to α · (‖c̃‖p/k1/p +‖c̃‖∞). So we cannot expect
better general upper bounds than in Theorem 5, even if we relax the strict balancedness
constraint and consider the average instead of the maximum boundary cost.

For the proof of Theorem 5 we refer to Appendix A.3. Notice that the first part is
implied by Theorem 4 and the fact that σp is at most a constant for well-behaved graphs
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with p-separator theorem. The second part follows from the observation that a balanced
separator of G can be constructed from each restriction χ|G(i) of a roughly balanced coloring

χ of G̃ to one of the copies of G, say G(i).
In Sections 3-5 we sketch a proof of Theorem 4. First, it is instructive to introduce

further notation that allows to formulate our results and proofs more easily.

Further Notation. Let Φ: V → R+ be a non-negative function on the vertices of a
graph G = (V,E). We extend Φ on the power set of V implicitly by the notation Φ(U) :=
∑

u∈U Φ(u) for U ∈ 2V . So it is justified to call Φ a measure on V .
Let χ be a k-coloring of G. The function Φχ-1 : [k] → R+ with (Φχ-1)(i) := Φ(χ-1(i))

maps each color to the Φ-measure or Φ-weight of its color class. So, ‖Φχ-1‖∞ is the
maximum Φ-measure (of a color class) of χ.

For any non-negative discrete function f , we write ‖f‖avg := ‖f‖1/k when the number
k of colors is understood. So, ‖Φχ-1‖avg is the average Φ-measure (of the color classes) of
χ and we have ‖Φχ-1‖avg = ‖Φ‖1/k = ‖Φ‖avg .

Analogously, the function ∂χ-1 : [k] → R+ with (∂χ-1)(i) := ∂(χ-1(i)) maps each color
to the boundary cost of its color class. So, ‖∂χ-1‖∞ is the maximum boundary cost of χ
as in Definition 1 and ‖∂χ-1‖avg is the average boundary cost of coloring χ. Clearly,
‖∂χ-1‖avg ≤ ‖∂χ-1‖∞.

For disjoint vertex sets W0,W1 ⊆ V , we can combine two k-colorings χ0 : W0 → [k] and
χ1 : W1 → [k] into a k-coloring of W := W0∪W1, by forming the direct sum χ0⊕χ1 : W →
[k] with (χ0 ⊕ χ1)(i) = χb(i) if i ∈Wb.

3 Multi-balanced colorings

In this section, we relax the strict constraints on the weights of the color classes and
consider (non-strictly) balanced colorings.

We say that a coloring χ of G = (V,E) is (weakly) balanced with respect to a vertex
measure Φ: V → R+ if ‖Φχ-1‖∞ = O(‖Φ‖avg + ‖Φ‖∞).

Furthermore, we are interested in colorings that are not only balanced with respect
to a single measure Φ like the weights w, but with respect to a constant number of mea-
sures Φ(1), . . . ,Φ(r). We call such colorings multi-balanced. We shall see that the proof of
Theorem 4 greatly benefits from the following results about multi-balanced colorings.

The main result of this section is the following lemma, which provides a bound on the
minimum average boundary cost of multi-balanced k-colorings.

Lemma 6 (Multi-bal. Min-Avg. Boundary). Let G = (V,E) be a graph with edge
costs c : E → R+ and vertex measures Φ(1), . . . ,Φ(r). Then, there exists a k-coloring χ
that is balanced with respect to Φ(1) through Φ(r) and has average boundary cost at most
proportional to σp · k−1/p · ‖c‖p. More precisely, we have

‖Φ(j)χ-1‖∞ = Or(‖Φ(j)‖avg + ‖Φ(j)‖∞) for j ∈ [r]

‖∂χ-1‖avg = Or(σp · q · k−1/p · ‖c‖p)

with 1 = 1
p + 1

q . One can compute such a coloring in time Or(t(|G|) · log k) with t as in
Theorem 4.
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We remark that one can in fact guarantee ‖Φ(1)χ-1‖∞ ≤ 3‖Φ(1)‖avg +Or(‖Φ(1)‖∞) for
the coloring obtained by Lemma 6.

Similar to [4], we observe that in the proof of Lemma 6 the boundary cost function
∂ : 2V → R+, which assigns each subset U of V its boundary cost ∂U , can approximately
be modeled as a vertex measure. Hence, the boundary cost of a coloring can be balanced
by the methods developed for Lemma 6. This idea yields the following proposition, which
makes up the first out three steps towards Theorem 4.

Proposition 7 (Multi-bal. Min-Max Boundary). Let G be as in Lemma 6. Then,
there exists a k-coloring χ which is balanced with respect to Φ(1) through Φ(r) and has
maximum boundary cost at most proportional to σp · (k−1/p · ‖c‖p + ∆c), formally,

‖Φ(j)χ-1‖∞ = Or(‖Φ(j)‖avg + ‖Φ(j)‖∞) for j ∈ [r]

‖∂χ-1‖∞ = Or(σp · (q · k−1/p · ‖c‖p + ∆c)).

One can compute such a coloring in time Or(t(|G|) · log k) with t as in Theorem 4.

In order to show Lemma 6, we need the following auxiliary lemma, which itself can be
viewed as a refined version of Lemma 6 for the case k = 2.

Lemma 8. Let G be as in Lemma 6. Then, each vertex set W ⊆ V can be 2-colored such
that the cost of the edges between the two color classes is at most (2r − 1) ·σp(G, c) · ‖c|W ‖p
and for all j ∈ [r], the Φ(j)-measure of each color class does not exceed 3

4(Φ(j)(W ) +

2r−j‖Φ(j)‖∞). In particular, the Φ(1)-measure of each color class is at most 1
2 (Φ(1)(W ) +

2r−1‖Φ(1)‖∞).
Furthermore, such a 2-coloring of G[W ] can be found in time Or(t(|G[W ]|)) where t is

as in Theorem 4.

Proof. By induction on r ≥ 1. First, graph G is bisected into two parts U1 and U2 with
respect to measure Φ(r). More precisely, from the definition of σp(G, c) it follows that there
exists a splitting set U1 ⊆W with cost at most ∂WU1 ≤ σp(G, c) · ‖c|W ‖p such that

|Φ(r)(U1)−Φ(r)(W )/2| ≤ ‖Φ(r)‖∞/2 (2)

Let U2 := W\U1 be the complement of U1 within W . In the case r = 1, the coloring
χ : W → {1, 2} with χ|Ub

≡ b fulfills all requirements of the lemma.
Therefore, we may assume r > 1. By induction hypothesis, we can find 2-colorings χ1

and χ2 of G[U1] and G[U2], that fulfill the conditions of the lemma for Φ(1) through Φ(r−1),
i.e., for b ∈ {1, 2} and j ∈ [r − 1],

‖Φ(j)χ-1
b ‖∞ ≤ 3/4(Φ(j)(U1) + 2r−1−j‖Φ(j)‖∞) (3)

‖∂χ-1
b ‖∞ ≤ (2r−1 − 1) · σp(G, c) · ‖c|Ub

‖p (4)

Without loss of generality, we may assume that for b ∈ {1, 2}, that

Φ(r)χ-1
b (b) ≤ 1

2Φ(r)(Ub) (5)
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Now, let χ : W → R+ be the direct sum of χ1 and χ2, i.e., χ|Ub
= χb. Then

Φ(r)χ-1(b) = Φ(r)χ-1
1 (b) + Φ(r)χ-1

2 (b)

(5)

≤ 1/2 · Φ(r)(Ub) + Φ(r)(W\Ub)

(2)

≤ 1/4 · Φ(r)(W ) + 1/2 · Φ(r)(W ) + 3/4 · ‖Φ(r)‖∞
= 3/4 · (Φ(r)(W ) + 2r−r‖Φ(r)‖∞)

We maintain for j < r

‖Φ(j)χ-1‖∞ ≤
∑

b

‖Φ(j)χ−1
b ‖∞

(3)

≤ 3
4(Φ(j)(W ) + 2r−j‖Φ(j)‖∞)

Similarly, we have ‖∂χ-1‖∞ ≤ ∂WU1 +
∑

b ‖∂χ−1
b ‖∞

(4)

≤ (2r − 1) ·σp(G, c) · ‖c|W ‖p using the
fact that ‖c|Ub

‖p ≤ ‖c|W ‖p for b ∈ {1, 2}. The additional guarantee

‖Φ(1)χ-1‖∞ ≤
∑

b

‖Φ(1)χ−1
b ‖∞ ≤ 1

2 (Φ(j)(W ) + 2r−1‖Φ(1)‖∞)

is also easily seen to be maintained.

The proof of Lemma 6 is by induction on the number of measures to be balanced. Due
to the length of the proof, we formulate the induction step as a lemma of its own. It states
that given any coloring χ, one can efficiently compute a new coloring χ̂ which is balanced
with respect to the measure Φ(1) such that the maximum Φ(j)-measure (1 < j ≤ k) and the
average boundary cost of the coloring increases by essentially at most a constant factor.
So if χ was balanced with respect to measure Φ(2) to Φ(r), then χ̂ is balanced with respect
to measures Φ(1) to Φ(r).

Lemma 9. Let G be as in Lemma 6 and let χ be an arbitrary k-coloring of G.
Then, a k-coloring χ̂ of G can be found in time Or(t(|G|) log k) such that

‖Φ(1) χ̂-1‖∞ = Or(‖Φ(1)‖avg + ‖Φ(1)‖∞)

‖Φ(j)χ̂-1‖∞ = Or(‖Φ(j)χ-1‖∞ + ‖Φ(j)‖∞)

‖∂χ̂-1‖avg = Or(‖∂χ-1‖∞ + B)

with B = q · k−1/p · σp · ‖c‖p, and t as in Theorem 4.

Since the induction basis, r = 0, for Lemma 6 is trivial, it only remains to show
Lemma 9 and Proposition 7.

Proof of Lemma 9. During the construction of χ̂, for each color i ∈ [k] a tentative color
class tent(i) ⊆ V is maintained. We start with tent(i) = χ-1(i) for each color i. The
algorithm has the invariant:

Invariant 1. {tent(i)}i∈[k] is a partition of V .
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In fact, tent(i) will assume at most three different sets in the course of the algorithm
for each color i. For convenience, let Ψ := Φ(1). According to the Ψ-weight of tent(i), we
maintain a partition of the color set [k].

Light = {i ∈ [k] | Ψ(tent(i)) < ‖Ψ‖avg}
Heavy = {i ∈ [k] | Ψ(tent(i)) ≥ 3‖Ψ‖avg + 2r‖Ψ‖∞}

Medium = [k] \ (Light ∪ Heavy)

Each heavy color i ∈ [k] will, in some iteration of our algorithm, be turned into a medium
color by Moveing vertices from tent(i) to tentative color classes of light colors.

Invariant 1 and the definition of the partition {Light ,Medium,Heavy} imply the claim
below, asserting that we can assign at least two distinct light colors to every heavy color.

Claim 1. |Light | ≥ 2|Heavy |.
Proof: We have ‖Ψ‖avg |Medium| + 3‖Ψ‖avg |Heavy| ≤ ‖Ψ‖1 = k · ‖Ψ‖avg . Since k =
|Light |+ |Medium|+ |Heavy|, we get 2|Heavy | ≤ |Light|. �

We have another partition of [k] into parts Untouched , Pending , and Finished . Initially
all colors are untouched. As the names suggest, we will have tent(i) = χ-1(i) for untouched
colors and tent(i) = χ̂-1(i) for finished colors. For pending colors, tent(i) is a common
superset of both χ-1(i) and χ̂-1(i), and so we might be obliged to change tentative color
classes of pending colors.

At each point in the algorithm, the two color partitions that we maintain are related
to each other in the following way.

Invariant 2. The following inclusions hold:

Light ⊆ Untouched Heavy ⊆ Pending

Finished ⊆Medium

To set up the inclusion Heavy ⊆ Pending in the beginning, we let each “initially” heavy
color i with Ψχ-1(i) ≥ 3‖Ψ‖avg + 2r‖Ψ‖∞ be Pending .

As indicated before, an iteration of our algorithm consists of Moveing vertices from
one tentative color class to other tentative color classes.

For each color i ∈ [k], we will have a set Vin(i) of vertices incoming to color i and a set
Vout(i) of vertices outgoing of color i. Similar to a network flow conservation law, we have

χ-1(i) ∪ Vin(i) = χ̂-1(i) ∪ Vout(i). (6)

None of Vin(i), χ̂-1(i), or Vout(i) is a “dynamic” sets. Once defined by the algorithm, the
sets are not changed afterwards. On the other hand, the two partitions of [k] and the
tentative color classes may change during the construction. As the names suggest, it is not
possible that a color gets Untouched again after it was pending or even finished.

We can now define the tentative color class tent(i) in terms of χ-1(i), Vin(i), and χ̂-1(i)
depending on the current state of color i,

tent(i) =











χ-1(i) if i ∈ Untouched ,

χ-1(i) ∪̇ Vin(i) if i ∈ Pending ,

χ̂-1(i) if i ∈ Finished .
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Then, our algorithm consists of iterating the following procedure as long as there exist
pending colors. (Remember that we start with Pending = {i ∈ [k] | Ψχ-1(i) ≥ 3‖Ψ‖avg +
2r‖Ψ‖∞} and Finished = ∅.)
Procedure Move (color i ∈ [k])

// Precondition: color i is pending.

(1.) If i ∈ Medium,

then augment χ̂ such that χ̂-1(i) = tent(i),

move i from Pending to Finished ; return.

// If pending color i is not medium, then i ∈ Heavy by Invariant 2,
and so |Light | > 2 by Claim 1.

(2.) Choose distinct colors x1, x2 ∈ Light .

(3.) Compute a splitting set U in G[X] of cost ∂XU ≤ σp · ‖c|X‖p, where
X := X(i) := tent(i) with ‖Ψ‖avg ≤ Ψ(U) ≤ ‖Ψ‖avg + ‖Ψ‖∞.

(4.) Find a 2-coloring χ0 of G[W ] as in Lemma 8 where W := Vout(i) := X\U .

(5.) Augment coloring χ̂ such that χ̂-1(i) = U and define Vin(xb) := χ-1
0 (b) for b ∈ {1, 2}.

(6.) Move color i from Pending to Finished and colors x1, x2 from Untouched to
Pending ; return.

We observe that for i, x1, x2 as above, it holds

Vout(i) = Vin(x1) ∪ Vin(x2) (7)

The procedure Move maintains Invariant 1. From the claim below it follows that also
Invariant 2 is maintained. The claim holds since both color classes of χ0 have Ψ-weight at
least ‖Ψ‖avg for i being heavy.

Claim 2. If procedure Move is applied to a heavy color i and colors x1, x2 are selected in
step (2.), then one has i ∈ Medium and x1, x2 6∈ Light afterwards.

Proof: After the procedure, color i is medium because Ψ(tent(i)) = Ψ(U) and ‖Ψ‖avg ≤
Ψ(U) ≤ ‖Ψ‖avg +‖Ψ‖∞ by construction. From Lemma 8, we get ΨVin(xb) ≥ 1/2 ·(Ψ(W )−
2r−1‖Ψ‖∞). By construction, we have Ψ(W ) = Ψ(X)−Ψ(U) and Ψ(U) ≤ ‖Ψ‖avg +‖Ψ‖∞.
Since color i was heavy when procedure Move was applied, we have Ψ(X) ≥ 3‖Ψ‖avg +
2r‖Ψ‖∞ and therefore

ΨVin(xb) ≥ 1/2 · (Ψ(X) −Ψ(U)− 2r−1‖Ψ‖∞)

≥ 1/2 · (Ψ(X) − ‖Ψ‖avg − ‖Ψ‖∞ − 2r−1‖Ψ‖∞)

≥ 1/2 · (2‖Ψ‖avg) = ‖Ψ‖avg .

By construction, each color xb is Pending after Move(i) and hence Ψ(tent(xb)) ≥ ΨVin(xb) ≥
‖Ψ‖avg . Thus, color xb cannot be Light anymore. �

After termination of the algorithm, we have Pending = ∅ and by Invariant 2 also
Heavy = ∅. So we obtain a Ψ-balanced coloring when we let the color classes of χ̂ agree with
the tentative color classes. We show next that our construction increased the maximum
Φ(j)-measure by not more than a constant factor (essentially).

The procedure Move induces a tree-like structure on the set of colors. More specifically,
let F be the directed binary forest on nodes [k] where a node i ∈ [k] has children x1, x2 ∈ [k]
if Vout(i) = Vin(x1) ∪ Vin(x2).
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By Lemma 8 and identity (7) we have for each arc (i, x) in F , that Φ(j)Vin(x) ≤
3/4 · Φ(j)Vout(i) + Or(‖Φ(j)‖∞). This observation and identity (6) imply that the Φ(j)-
weight of Vin(i) decreases geometrically along the arcs of F , i.e.,

Φ(j)Vin(x) ≤ 3
4Φ(j)Vin(i) +Or(‖Φ(j)χ-1‖∞ + ‖Φ(j)‖∞) (8)

Since Vin(s) = ∅ for each root s of F and since the geometric series over 3/4 is convergent,
relation (8) implies Φ(j)Vin(i) = Or(‖Φ(j)χ-1‖∞ + ‖Φ(j)‖∞). So the claim below holds for
each color i ∈ [k], because χ̂-1(i) ⊆ X(i) := χ-1(i) ∪ Vin(i) by identity (6),

Claim 3. Φ(j)χ̂-1(i) ≤ maxi Φ
(j)X(i) = 4‖Φ(j)χ-1‖∞ +Or(‖Φ(j)‖∞).

Proof: By induction on the distance h of color i from a root s in F , we conclude from
relation (8) that

Φ(j)Vin(i) ≤ (3/4)hΦ(j)Vin(s) +
∞
∑

l=1

(3/4)l(‖Φ(j)χ-1‖∞ +Or(‖Φ(j)‖∞)).

Since Vin(s) = ∅, we have

Φ(j)Vin(i) ≤ 3‖Φ(j)χ-1‖∞ +Or(‖Φ(j)‖∞).

By identity (6), we have Φ(j)χ̂-1(i) ≤ Φ(j)X(i) = Φ(j)Vin(i) + ‖Φ(j)χ-1‖∞ and therefore

‖Φ(j)χ̂-1‖∞ ≤ maxi Φ
(j)X(i) ≤ 4‖Φ(j)χ-1‖∞ +Or(‖Φ(j)‖∞). �

What remains is to estimate the average boundary cost of the coloring χ̂ in terms
of ‖∂χ-1‖avg and B. By Lemma 8, the cost of the edges cut by Move (i) is at most
proportional to σp · ‖c|X(i)‖p. So we have

‖∂χ̂-1‖avg ≤ ‖∂χ-1‖avg +Or(σp
∑k

i=1 ‖c|X(i)‖p/k) (9)

To meet the requirements of the lemma, we need to show that
∑k

i=1 ‖c|X(i)‖p = Or(B).
The idea is to consider first each component of F separately. Let Cs ⊆ [k] denote the tree
component of F with root s ∈ [k]. We shall need a bound on the depth of Cs in terms of
the Ψ-weight of χ-1(s).

For a color i, let excess(i) := ΨX(i) − ‖Ψ‖avg be the amount by which the Ψ-weight
of tent(i) exceeded the average Ψ-weight at the time when color i was pending. Similar to
relation (8), excess(i) decreases geometrically along the arcs (i, x) of F . Since Lemma 8
gives stricter estimates for Φ(1) = Ψ, the claim below follows in fact from identities (6) and
(7).

Claim 4. excess(x) ≤ 1
2excess(i) + 2r−2‖Ψ‖∞

Proof: Identity (6) gives ΨX(x) = Ψχ-1(x) + ΨVin(x). It holds Ψχ-1(x) ≤ ‖Ψ‖avg ,
because color x was Light in the beginning. Since (i, x) is a arc in F , we get ΨVin(x) ≤
ΨVout(i)/2 + 2r−2‖Ψ‖∞ from Lemma 8 and identity (7). Again by identity (6) we have
ΨVout(i) = ΨX(i) − Ψχ̂-1(i). By Claim 2 it holds Ψχ̂-1(i) ≥ ‖Ψ‖avg and thus ΨVout(i) ≤
excess(i). Now it follows

excess(x) = ΨVin(x) + Ψχ-1(x)− ‖Ψ‖avg

≤ ΨVout(i)/2 + 2r−2‖Ψ‖∞
≤ Ψ(excess(i)/2 + 2r−2‖Ψ‖∞. �
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By the definition of the color set Heavy , every colors x with excess(x) ≤ 2‖Ψ‖avg +
2r‖Ψ‖∞ is either Light or Medium, and hence x is a leaf in F . So it follows from Claim 4
and a simple inductive argument, that the depth of component Cs is at most logarithmic
in the ratio of Ψχ-1(s) and ‖Ψ‖avg.

Claim 5. The depth ds of a F-component with root s is at most log(Ψχ-1(s)/‖Ψ‖avg).

Proof: From Claim 4 it follows by induction on the depth d of node x ∈ Cs, that the
following relation holds:

excess(x) ≤ 2−dexcess(s) + 2r−1‖Ψ‖∞ ≤ 2−dΨχ-1(s) + 2r‖Ψ‖∞
At depth ds − 1 it must hold Ψχ-1(s)/2ds−1 + 2r‖Ψ‖∞ ≥ excess(x) > 2‖Ψ‖avg + 2r‖Ψ‖∞
for at least one x ∈ Cs. It follows Ψχ-1(s) ≥ 2ds‖Ψ‖avg as claimed. �

Claim 5 implies that the running time of our algorithm is O(t(|G|) · log k). By Invari-
ant 1, the vertex sets X(i) are pairwise disjoint for all nodes i in the same level of F , i.e.,
with the same distance from a root in F . By linearity of t, the total time for the colors in
one level is O(t(|G|)). So the total running time is O(t(|G|) · log k) by Claim 5.

Since F [Cs] is a binary tree and the sets X(i) are pairwise disjoint for nodes in the same
level of F , standard convexity arguments (Hölder’s inequality) yield the claim below.

Claim 6.
∑

i∈Cs
‖c|X(i)‖p ≤

∑ds
d=0 ‖c|As

‖p · 2d/q ≤ 3q‖c|As
‖p · 2ds/q, where 1

p + 1
q = 1 and

As :=
⋃

i∈Cs
X(i).

Proof: Let Ld
s be the nodes in Cs with distance d from s. As |Ld

s | ≤ 2d, we have by
Hölder’s inequality

∑

i∈Ld
s

‖c|X(i)‖p ≤ ‖
∑

i∈Ld
s

c|X(i)‖p · 2d/q.

Since the sets X(i) ⊆ As are pairwise disjoint for i ∈ Ld
s, it holds

∑

i∈Ld
s
c|X(i) ≤ c|As

and

thus
∑

i∈Ld
s
‖c|X(i)‖p ≤ ‖c|As

‖p · 2d/q. So we can conclude

∑

i∈Cs

‖c|X(i)‖p ≤
∑

0≤d≤ds

‖c|As
‖p · 2d/q ≤ ‖c|As

‖p · 21/q

21/q−1
· 2ds/q ≤ 3q‖c|As

‖p · 2ds/q

using 1/(21/q − 1) ≥ q/ ln 2 and 21/q/ ln 2 ≤ 3. �

Using the bound on ds from Claim 5, and the bound on
∑

i∈Cs
‖c|X(i)‖p from Claim 6,

we arrive with Hölder’s inequality at:

Claim 7.
∑k

i=1 ‖c|X(i)‖p ≤ 3q‖c‖p · k1/q = 3k · B.

Proof: By Claim 5 we have ds ≤ Ψχ-1(s)/‖Ψ‖avg ≤ Ψ(As)/‖Ψ‖avg . Now it follows from
Claim 6 and Hölder’s Inequality,

k
∑

i=1

‖c|X(i)‖p ≤
∑

s

3q‖c|As
‖p( Ψ(As)

‖Ψ‖avg
)1/q ≤ 3q

∥

∥

∥

∑

s
c|As

∥

∥

∥

p
·
(

∑

s

Ψ(As)
‖Ψ‖avg

)1/q
.

Since {As}s form a partition of the vertex set V , we conclude

k
∑

i=1

‖c|X(i)‖p ≤ 3q‖c‖p · (‖Ψ‖1/‖Ψ‖avg)
1/q = 3q‖c‖p · k1/q. �

So by relation (9), ‖∂χ̂-1‖avg is at most the average boundary cost of the original
coloring χ plus Or(q · σp · ‖c‖p/k1/p).
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In the remainder of the section, we prove Proposition 7, which is our strongest re-
sult about multi-balanced colorings. The idea is to start with a coloring as obtained by
Lemma 6, and then to balance the boundary costs of the coloring using essentially the
algorithm of Lemma 9. The hope is that boundary costs of the color classes behave in the
algorithm approximately like vertex measures. So, we should ensure that a single Move-
step does not break the bound of Proposition 7 on the maximum boundary costs. For this
reason, we balance the coloring beforehand with respect to the following measure.

Definition 10 (Splitting Cost Measure). The (p-)splitting cost measure of graph G =
(V,E) with respect to edge costs c is defined by

π : V → R+, π(v) := σp
p

∑

e∈δ(v)

cpe/2.

For all vertex sets W ⊆ V , one has σp‖c|W ‖p ≤ (π(W ))1/p =: π1/p(W ). So there exist

splitting sets in G[W ] of boundary cost at most π1/p(W ), even if weights and splitting
value are worst possible. Thus, we call π1/p(W ) the splitting cost of W .

Since ‖π‖1/p
1 = σp‖c‖p and ‖π‖1/p

∞ ≤ σp∆c, we have

(‖π‖1/k + ‖π‖∞)1/p ≤ σp(q · k−1/p · ‖c‖p + ∆c) =: B′ (10)

and hence color classes of π-balanced colorings can be split at cost O(B′). So if we start
with a π-balanced coloring and maintain the π-balancedness, then a single iteration of
procedure Move from Lemma 9 cannot break the bound on the maximum boundary cost
from Proposition 7.

Proof of Proposition 7. We may assume that only the measures Φ(3) through Φ(r) are ar-
bitrary and that the measures Φ(1) and Φ(2) can be defined by ourselves. This assumption
does not weaken the statement of the proposition since the statement is invariant under
renaming and adding (constantly many) “new” measures.

We define Φ(2) to be the p-splitting cost measure π of G with respect to c. Let χ be a
coloring that is balanced with respect to Φ(2) through Φ(r) and has average boundary cost
at most proportional to σp · k−1/p · ‖c‖p. By Lemma 6 such a coloring exists and can be
obtained efficiently.

Consider the following measure that accounts for edges not running within a single
color class of χ

Ψ(v) := c({uv ∈ E | χ(u) 6= χ(v)}).
Note that ‖∂χ-1‖∞ = ‖Ψχ-1‖∞, ‖Ψ‖avg = ‖∂χ-1‖avg , and ‖Ψ‖∞ ≤ ∆c. So if χ was Ψ-
balanced, then the maximum boundary cost of χ would already be as required by the
proposition.

We use Lemma 9 to establish Ψ-balancedness. However, there is a small twist. Instead
of instantiating the lemma for r measures, we instantiate it for r + 1 measures, namely
Φ(1), . . . ,Φ(r+1), where Φ(1) := Ψ, Φ(2) := π, and Φ(r+1) is defined later. Then, let χ̂ be
the coloring obtained by the algorithm of Lemma 9 for measures Φ(1) through Φ(r+1). So
χ̂ is balanced with respect to Φ(1) through Φ(r) and has average boundary cost at most
proportional to σr · k−1/p · ‖c‖p.
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The idea is now that for vertex sets U ⊆ V , the Φ(1)-weight of U approximates the
boundary cost of U in the graph induced by the χ-bichromatic edges, and the Φ(r+1)-weight
of U shall approximate the boundary cost of U within the monochromatic edges. So taking
these two measure together should yield an approximation of the “real” boundary cost of
U .

For the following proof, we define all symbols as in the proof of Lemma 6. In addition,
let E′ := {e ∈ E | |χ(e)| = 1} be the set of edges that run within one color class of χ.
Note that the measure Ψ accounts for all edges besides E′. More specifically, we have for
all U ⊆ V ,

∂U ≤ ΨU + ∂′(U) (11)

where ∂′U := c(δ(U) ∩ E′) is the cost of the χ-monochromatic boundary edges.
Since χ̂ is balanced with respect to Ψ, we know ‖Ψχ̂-1‖∞ = Or(‖Ψ‖avg + ‖Ψ‖∞) =

Or(B′), Hence the estimate ‖∂′χ̂-1‖∞ = Or(B′) will imply the desired bound ‖∂χ̂-1‖∞ ≤
‖Ψχ̂-1‖∞ + ‖∂′χ̂-1‖∞ = Or(B′).

For deriving ‖∂′χ̂-1‖∞ = Or(B′), we need the following two technical claims.
Stronger than the π-balancedness of χ̂, the claim below holds – indeed implied by the

discussion for Claim 3.

Claim 8. π1/p(X(i))≪r (‖π‖avg + ‖π‖∞)1/p (10)
= Or(B′).

Proof: By Claim 3, we have π(X(i)) ≤ 4‖πχ-1‖∞ + Or(‖π‖∞). The balancedness of χ
with respect to π implies ‖πχ-1‖∞ = Or(‖π‖avg + ‖π‖∞). �

The next claim is a consequence of identity (6), and the fact that the edges between
parts χ̂-1(i) and Vout(i) have cost at most π1/p(X(i)) = Or(B′). (Note that we can assume
χ̂-1(i) 6= χ-1(i), since otherwise ∂′χ̂-1(i) = ∂′χ-1(i) = 0.)

Claim 9. If χ̂-1(i) 6= χ-1(i) then ∂′χ̂-1(i) ≤ ∂′Vin(i) +Or(B′).
Proof: If the i-th color classes in χ and χ̂ differ, then Vin(i) was defined at some point of
the algorithm. Since χ̂-1(i) ⊆ X(i) = χ-1(i) ∪ Vin(i) by identity (6), every boundary edge
of χ̂-1(i) either crosses X(i) or completely runs within X(i). Thus ∂′χ̂-1(i) ≤ ∂X(i)χ̂

-1(i) +

∂′X(i). By construction, the boundary cost of χ̂-1(i) in G[X(i)] is at most π1/p(X(i)) =
Or(B′). Since ∂′ vanishes on χ-1(i) as all its boundary edges are bichromatic in χ, we have
∂′X(i) ≤ ∂′χ-1(i) + ∂′Vin(i) = ∂′Vin(i). �

For the bound ‖∂′χ̂-1‖∞ = Or(B′), it is now sufficient to show ∂′Vin(i) = Or(B′). The
idea is to achieve a situation for ∂′Vin(i) similar to relation (8), i.e., we want ∂′Vin(i) to
decrease geometrically along the arcs of F . In fact, nothing else remains to show:

Claim 10. If ∂′Vin(i) decreases geometrically along the arcs of F , then the maximum
boundary cost of χ̂ with respect to both ∂′ and ∂ is in Or(B′).
Proof: If it holds ∂′Vin(x) ≤ z · ∂′Vin(i) + Or(B′) for some fixed constant z < 1 and all
arcs (i, x) of F , then we have ∂′Vin(i) = Or(B′) and by Claim 9 also ∂′χ̂-1(i) = Or(B′)
for all colors i ∈ [k]. Then, it follows from relation (11) that the maximum boundary
cost of χ̂-1 bounded by ‖Ψχ̂-1‖∞ + Or(B′). By construction, χ̂-1 is balanced with respect
to Ψ and thus ‖Ψχ̂-1‖∞ ≪r ‖Ψ‖avg + ‖Ψ‖∞ ≪r ‖∂χ-1‖∞ + ∆c = Or(B′). Hence we get
‖∂χ̂-1‖∞ = Or(B′). �

We choose the measure Φ(r+1) in the following way to ensure the assumption of Claim 10.
At the time when Move is applied to color i ∈ [k], let Φ(r+1)(v) be the cost of the edges
from δ(Vin(i))∩E′ that are incident to v ∈ V Formally, Φ(r+1)(v) := c(δ(v)∩δ(Vin(i))∩E′)
for v ∈ Vin(i). For convenience, we set Φ(r+1)(v) = 0 for vertices outside of Vin(i). We
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have Φ(r+1)Vin(i) = ∂′Vin(i) and for all U ⊆ V , in particular U = Vin(i), it holds

∂′U ≤ Φ(r+1)(U) + ∂X(i)U (12)

by identity (6) and the fact ∂′χ-1(i) = 0. So Φ(r+1) is a good approximation of ∂′, at least
for sets with small boundary cost in G[X(i)].

For an arc (i, x) of F , it follows from Claim 8 and Lemma 8 that the boundary cost
of Vin(x) in G[X(i)] is at most proportional to π1/p(X(i)) = Or(B′). Lemma 8 guaran-
tees Φ(r+1)Vin(x) ≤ 3/4 · Φ(r+1)Vout(i) + Or(‖Φ(r+1)‖∞). Then relation (12) and the fact
Φ(r+1)Vout(i) ≤ ∂′Vin(i) finally show:

Claim 11. ∂′Vin(x) ≤ 3
4∂

′Vin(i) +Or(B′).
Proof: Using ∂X(i)Vin(x) = Or(B′) and Φ(r+1)Vin(x) ≤ 3/4·Φ(r+1)Vout(i)+Or(‖Φ(r+1)‖∞),

we get from relation (12): ∂′Vin(x) ≤ 3/4 · Φ(r+1)Vout(i) + Or(B′ + ‖Φ(r+1)‖∞). Clearly,

‖Φ(r+1)‖∞ ≤ B′. Since ‖Φ(r+1)‖1 = ∂′Vin(i) when Move is applied to color i, we have

Φ(r+1)Vout(i) ≤ ∂′Vin(i) and therefore ∂′Vin(x) ≤ 3/4 · ∂′Vin(i) +Or(B′), as required. �

From Claim 10 it follows now that χ̂ fulfills all requirements of the proposition.

4 Improving balancedness at no cost

In this section we show how weakly balanced colorings can be transformed into strictly
balanced colorings while maintaining the bounds on the maximum boundary cost claimed
by Theorem 4. Together with Proposition 7, this result shall imply Theorem 4.

We proceed in two steps. First we obtain a similar result about colorings with only
slightly relaxed constraints on the weights. A k-coloring is called almost strictly balanced
with respect to weights w if the weight of each color classes differs from the average weight
by at most 2‖w‖∞.

Proposition 11. Let k ∈ N and G = (V,E) be a graph with edge costs c and vertex weights
w.

Then any w-balanced k-coloring χ of G can be transformed into an almost strictly
balanced k-coloring χ̂ without increasing the maximum boundary cost or splitting cost by
more than a constant factor, essentially. More precisely,

‖πχ̂-1‖∞ = Op(‖πχ-1‖∞)

‖∂χ̂-1‖∞ = Op(‖∂χ-1‖∞ + ‖πχ-1‖1/p
∞ )

where π is the p-splitting cost measure of G (cf. Definition 10).
The coloring χ̂ can be obtained from χ in time O(t(|G|)) with t is as in Theorem 4.

As soon as we have an almost strictly balanced coloring its is easy to obtain a desired
strictly balanced coloring. The idea is to reduce the weight of each color class below
‖w‖avg by cutting off parts (vertex sets) of weight about ‖w‖∞. These parts are then
redistributed among the color classes by a greedy bin-packing procedure. Since we started
with an almost strictly balanced coloring, the above procedure alters each color class at
most a constant number of times. So we get the proposition below. For a detailed proof
we refer to Appendix A.2.
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Proposition 12. Let k and G be as in Proposition 11. Then any almost balanced k-coloring
χ can be turned into a strictly balanced k-coloring with

‖∂χ̂-1‖∞ = Op(‖∂χ-1‖∞ + ‖πχ-1‖1/p
∞ + ∆c).

The coloring χ̂ can be obtained from χ in time O(t(|G|) log k), where t is as in Theorem 4.

Theorem 4 is implied by the conjunction of Propositions 7, 11, and 12.

Proof of Theorem 4. If we apply Proposition 7 with Φ(1) := w and Φ(2) := π, then we

obtain a w-balanced coloring χ1 such that both the maximum splitting cost ‖πχ-1
1 ‖

1/p
∞ and

the maximum boundary cost ‖∂χ-1
1 ‖∞ of χ1 are at most proportional to σp · (k−1/p · ‖c‖p +

∆c).
By Proposition 11, we can transform χ1 into an almost strictly w-balanced coloring χ2

with maximum splitting cost and maximum boundary cost fulfilling the same bounds as
before.

Finally, Proposition 12 yields a strictly w-balanced coloring χ3 of G with maximum
boundary cost Op(σp · (k−1/p‖c‖p + ∆c). Hence it holds ∂k

∞(G, c) = Op(σp · (k−1/p‖c‖p +
∆c).

In the remainder of this section we sketch a proof of Proposition 11.
We aim for a recursive algorithm that computes an almost strictly balanced coloring

from a weakly balanced k-coloring χ, with ‖wχ-1‖∞ ≤ M‖w‖avg for some constant M .
First, a so called shrinking procedure computes from χ two colorings χ0 : V0 → [k] and
χ1 : V1 → [k] of disjoint vertex subsets V0 and V1 with V0 ∪ V1 = V . The coloring χ0

shall be almost strictly balanced and χ1 is weakly balanced with ‖wχ-1
1 ‖∞ ≤M‖w|V1

‖avg .
Most importantly, the maximum splitting cost and the maximum boundary cost decrease
geometrically when going from coloring χ to the “shrunken” coloring χ1.

From coloring χ1, we recursively compute an almost strictly balanced coloring χ̂1 of
V1. Since now both χ0 and χ̂1 are almost strictly balanced, the weight of each color class
in the direct sum χ0 ⊕ χ̂1 : V → [k] differs from the average weight by at most 4‖w‖∞. So
coloring χ0 need to be changed only slightly to obtain a coloring χ̃0 such that the direct
sum χ̃0 ⊕ χ̂1 indeed is the desired almost strictly balanced coloring χ̂ of V .

In order to ensure that the boundary costs do not accumulate in the recursive calls,
we need precise bounds on the maximum boundary cost and maximum splitting cost of
the colorings χ0 and χ1. The following definition captures these (technical) requirements.
Roughly speaking, one wants that the maximum boundary cost ‖∂χ-1

0 ‖∞ and the maximum
splitting cost ‖πχ-1

0 ‖∞ of coloring χ0 are at most proportional to the respective costs of
the original coloring χ. The costs ‖∂χ-1

1 ‖∞ and ‖πχ-1
1 ‖∞ of the coloring χ1 should be

geometrically less than the respective costs in χ. In order to ensure that our recursive
algorithm runs in linear time, we require that the size |G[V1]| of the graph induced by V1

is only a constant fraction of |G|.
Definition 13 (Shrinking Procedure). For ǫ > 0 and M := 1/ǫ5, let P be a procedure
that transforms any weakly balanced k-coloring χ of a vertex set W ⊆ V with

‖wχ-1‖∞ ≤M · ‖w|W ‖avg and ‖w‖∞ ≤ ǫ5 · ‖w|W‖avg

into two k-colorings χ0 and χ1 of disjoint sets W0 and W1 with W0 ∪W1 = W .
Then procedure P is called ǫ-shrinking if
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a) coloring χ0 is almost strictly balanced with wχ-1
0 (i) − ǫ‖w|W ‖avg ∈ [0, ‖w‖∞], and it

holds ‖πχ-1
0 ‖∞ = OM (‖πχ-1‖∞), and also ‖∂χ-1

0 ‖∞ = OM (‖∂χ-1‖∞ + ‖πχ-1‖1/p
∞ ),

b) coloring χ1 is weakly balanced with ‖wχ-1
1 ‖∞ ≤ M‖w|W1

‖avg , and it holds ‖πχ-1
1 ‖∞ ≤

(1− ǫ10)‖πχ-1‖∞, and also ‖∂χ-1
1 ‖∞ ≤ (1− ǫ10)‖∂χ-1‖∞ +OM (‖πχ-1‖1/p

∞ ),

c) it holds |G[W1]| ≤ (1− ǫ10)|G[W ]|.
Notice that ∂χ-1

b and ∂χ-1 refer to the boundary costs of the respective color classes with
respect to the host graph G (as opposed to G[Wb] or G[W ]).

The definition above makes only sense if there are efficient shrinking procedures.

Lemma 14. For sufficiently small ǫ > 0, there exist ǫ-shrinking procedures that run in
time proportional to t(|G[W ]|) when applied to a balanced coloring of G[W ].

We can think of our algorithm as a divide-and-conquer algorithm. Then the shrinking
procedure divides the problem into two subproblems, where the subproblem corresponding
to the coloring χ0 is trivial, since χ0 is already almost strictly balanced, and the subproblem
for coloring χ1 is of the same type as for the input coloring χ but has reduced complexity,
in the sense that the maximum splitting and boundary costs decreased geometrically. We
do not know yet how the conquer-phase works, i.e., how to construct a solution for the
original problem.

Suppose we obtained an almost strictly balanced coloring χ̂1 from the recursive call for
χ1. We want to transform the coloring χ0 into a coloring χ̃0 such that the direct sum of
χ̃0 and χ1 is almost strictly balanced. The idea is to uncolor parts of the color classes in
χ0 until the direct sum with χ1 has maximum weight at most ‖w‖avg . The weight of each
part shall be between ‖w‖∞ and 2‖w‖∞. Then these parts are redistributed among the
color classes by a greedy bin-packing procedure, so that the direct sum χ̃0 ⊕ χ̂1 is almost
strictly balanced.

With the technical requirements of the lemma below, a straight-forward analysis shows
that each color class is changed only constantly often in the conquer-phase and thus the
the maximum splitting cost measure or the maximum boundary cost increased by no more
than a constant factor (essentially).

Lemma 15 (Conquer-Phase). Let χ0 and χ̂1 be two k-colorings of disjoint sets W0 and
W1 with W0 ∪W1 = W . Suppose that wχ̂-1

1 (i) ≤ ‖w|W ‖avg − ‖w‖∞ for each color i ∈ [k].
If both wχ-1

0 (i) = ‖w|W0
‖avg + O(‖w‖∞) and wχ̂-1

1 (i) = ‖w|W1
‖avg + O(‖w‖∞) for all

colors i ∈ [k], then χ0 can be transformed into a coloring χ̃0 such that the direct sum
χ̂ = χ̃0 ⊕ χ̂1 is almost strictly balanced.

Neither the maximum splitting cost nor the maximum boundary cost is increased by more
than essentially a constant factor; more precisely, ‖πχ̃-1

0 ‖∞ = O(‖πχ-1
0 ‖∞) and ‖∂χ̃-1

0 ‖∞ =

O(‖∂χ-1
0 ‖∞ + ‖πχ-1

0 ‖
1/p
∞ ).

The coloring χ̃0 can be obtained in time O(t(|G|)).
Assuming Lemma 14 and Lemma 15, a straight-forward analysis of the described

“shrink-and-conquer” algorithm proves Proposition 11. (Lemma 15 is also used to handle
the base case of the algorithm, i.e., for ‖w‖∞ ≥ ǫ5‖w|W ‖avg when the ǫ-shrinking procedure
cannot be applied.)

For proofs of the assumed lemmas 14 and 15 we refer to Section 5 and Appendix A.2,
respectively.
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Proof of Proposition 11. We show by induction on the cardinality of W that the coloring χ
can be transformed into an almost strictly balanced coloring χ̂ with ‖πχ̂-1‖∞ ≤ C1‖πχ-1‖∞
and ‖∂χ̂-1‖∞ ≤ C1‖∂χ-1‖∞ + C2‖πχ-1‖1/p

∞ for appropriately chosen constants C1, C2. Let
P be an ǫ-shrinking procedure from Lemma 14 for some sufficiently small absolute constant
ǫ > 0. Notice that M := 1/ǫ5 is also an absolute constant.

The base case is ‖w‖∞ > ǫ5‖w|W ‖avg. Since χ is weakly balanced, the maximum weight
of χ is at most M · ‖w|W ‖avg ≤M2‖w‖∞. Hence we can apply Lemma 15 (with W0 = W
and W1 = ∅) to obtain an almost strictly balanced coloring χ̃0. The coloring χ̂ := χ̃0

satisfies the requirements of the proposition.
We may now assume ‖w‖∞ ≤ ǫ5‖w|W ‖avg and ‖w|W ‖avg > 0. Then we can apply our

ǫ-shrinking procedure P to obtain colorings χ0 and χ1 of disjoint vertex sets W0 and W1.
By induction hypothesis, χ1 can be transformed into an almost strictly balanced coloring

χ̂1 with ‖πχ̂-1
1 ‖∞ ≤ C1‖πχ-1

1 ‖∞ and ‖∂χ̂-1
1 ‖∞ ≤ C1‖∂χ-1

1 ‖∞ + C2‖πχ-1
1 ‖

1/p
∞ .

The maximum weight ‖wχ̂-1
1 ‖∞ is bounded by

‖w|W1
‖avg + 2‖w‖∞ ≤ (1− ǫ+ 3ǫ5)‖w|W ‖avg − ‖w‖∞

which is less than the upper bound ‖w|W ‖avg−‖w‖∞ required by Lemma 15, for sufficiently
small ǫ. Thus, we can apply Lemma 15 to obtain a coloring χ̃0 such that χ̃0⊕ χ̂1 is almost
strictly balanced.

The maximum π-weight of χ̂ := χ̃0⊕ χ̂1 is at most ‖πχ̂-1
1 ‖∞ +‖πχ̃-1

0 ‖∞ ≤ C1‖πχ-1
1 ‖∞ +

O(‖πχ-1‖∞). Since P is ǫ-shrinking, it holds ‖πχ-1
1 ‖∞ ≤ z‖πχ-1‖∞ for z := (1 − ǫ10) and

therefore we have

‖πχ̂-1‖∞ ≤ (z · C1 +O(1))‖πχ-1‖∞ ≤ C1‖πχ-1‖∞

for sufficiently large C1.

Similarly, the maximum boundary cost of χ̂ is at most C1 · (z‖∂χ-1‖∞ +O(‖πχ-1‖1/p
∞ )+

C2 · (z1/p · ‖πχ-1‖∞) +O(‖∂χ-1‖∞ + ‖πχ-1‖1/p
∞ ). It holds

‖∂χ̂-1‖∞ ≤ (z · C1 +O(1))‖∂χ-1‖∞
+ (z1/p · C2 +O(C1 + 1))‖πχ-1‖1/p

∞

≤ C1‖∂χ-1‖∞ + (z1/pC2 +O(C1))‖πχ-1‖1/p
∞

for sufficiently large C1. Then if C2 is large enough relative to C1, the maximum boundary

cost of χ̂ is at most C1 · ‖∂χ-1‖∞ + C2 · ‖πχ-1‖1/p
∞ .

The claimed running time O(t(|G|)) follows from the facts that t is a linear function and
that the size of the considered graph decreases by a constant factor with each application
of the shrinking procedure.

5 Shrinking procedure

In this section we show Lemma 14. Let ǫ > 0 be a sufficiently small absolute constant.
The precise value of ǫ is not important. For convenience, we write M := ǫ5, Ψ := w,
Φ(1) := π, and Φ(2) := degW , where degW (v) is the degree of v in G[W ]. Notice that
Φ(2)(W1) ≤ (1− ǫ10)Φ(2)(W ) implies |G[W1]| ≤ (1− ǫ10)|G[W ]| for all vertex sets W1 ⊆W .
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In the following we assume ‖Ψ‖∞ ≤ ǫ5Ψ∗, where Ψ∗ := Ψ(W )/k is the average weight
of a color class in coloring χ : W → [k]. We need the corollaries below for our proof of
Lemma 14. (For the proof and lemma of the corollaries we refer to Appendix A.1.)

A vertex set U with Ψ-weight Θ(M ·Ψ∗) can be partitioned into about Θ(M/ǫ) parts,
each of Ψ-weight Θ(ǫΨ∗). An averaging argument shows that for one of these parts, X say,
all three Φ(1)(X), Φ(2)(X), and ∂(X) are small – at most an O(ǫ/M)-fraction:

Corollary 16. For every U ⊆ V with M/2 ≤ Ψ(U)/Ψ∗ ≤ M , there exists a subset X of
U with ∂UX = OM (π1/p(U)) and ǫ ≤ Ψ(X)/Ψ∗ ≤ 3ǫ such that

Φ(j)(X) ≤ (18ǫ/M) · Φ(j)(U)

∂X ≤ (18ǫ/M) · ∂U +OM (π1/p(U))

Analogous to the corollary above:

Corollary 17. For every U ⊆ V with 1/2 ≤ Ψ(U)/Ψ∗ ≤M , there exists a subset X of U
with ∂UX = OM (π1/p(U)) and ǫ ≤ Ψ(X)/Ψ∗ ≤ 3ǫ such that

Φ(j)(X) ≤ 18ǫ · Φ(j)(U),

∂X ≤ 18ǫ · ∂U +OM (π1/p(U))

Somehow dual to the preceding corollaries. A vertex set U is partitioned into at most
9Ψ(U)/(ǫ ·Ψ∗) parts, each of Ψ-weight about ǫ/9 ·Ψ∗. Among these parts, let X1,X2,X3

be the parts with maximum Φ(1)-, Φ(2), and ∂-weight, respectively. Then for the union
X = X1∪X2∪X3, all three Φ(1)(X), Φ(2)(X) and ∂(X) are large – at least a (ǫ/9·Ψ∗/Ψ(U))-
fraction.

Corollary 18. For every U ⊆ V with ǫ ≤ Ψ(U)/Ψ∗ ≤ M , there exists a subset X of U
with ∂UX = OM (π1/p(U)) and ǫ ≤ Ψ(X)/Ψ∗ ≤ ǫ+ ‖Ψ‖∞/Ψ∗ such that

Φ(j)(U\X) ≤ (1− ǫ/9 · Ψ∗

Ψ(U)) · Φ(j)(U),

∂(U\X) ≤ (1− ǫ/9 · Ψ∗

Ψ(U)) · ∂U +OM (π1/p(U))

Now we are armed to show Lemma 14. We remark that sets X as in the corollaries
above can be obtained in time OM (t(|G[U ]|)).

Proof of Lemma 14. We are given a coloring χ of a vertex set W ⊆ V with ‖Ψχ-1‖∞ ≤
MΨ∗ Our aim is to find two k-coloring χ0 and χ1 with each vertex of W being colored in
exactly one of two colorings, such that χ0 is almost strictly Ψ-balanced and χ1 is weakly
balanced with ‖Ψχ-1

1 ‖∞ ≤M · ‖Ψχ-1
1 ‖avg .

First, we transform coloring χ into a coloring χ̃ with maximum Ψ-weight at most
M/2 · Ψ∗ and minimum Ψ-weight at least ǫ · Ψ∗. This transformation is done by moving
parts generated by Corollary 16 and 17 from “heavy” color classes to “light” color classes.
Then Corollary 18 can be applied to each color class χ̃-1(i). The corollary yields sets
Xi ⊆ χ̃-1(i) with Ψ(Xi) at least ǫΨ∗ and at most this value plus ‖Ψ‖∞. Hence, the
restriction of χ̃ to the union W0 of the sets X1 to Xk is an almost strictly balanced
coloring. So we can define χ0 := χ̃|W0

. On the other hand, the restriction of χ̃ to the
complement W1 := W \W0 is a coloring with maximum Ψ-weight at most M/2 ·Ψ∗. It is
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not difficult to check that M/2 ·Ψ∗ ≤M ·Ψ(W1)/k (cf. Claim 1). So coloring χ1 := χ̃|W1

fulfills ‖Ψχ̃-1
1 ‖∞ ≤M · ‖Ψχ-1

1 ‖avg .
We need to ensure that the construction of χ̃ does not increase the Φ(j)-weight of color

classes by more than a small fraction of ‖Φ(j)χ-1‖∞. Otherwise, Corollary 18 could not
guarantee ‖Φ(j)χ-1

1 ‖∞ ≤ (1 − ǫ10)‖Φ(j)χ-1‖∞ as required by the lemma. Similarly, the
construction should not increase the boundary costs of color classes by too much.

The idea for constructing χ̃ is as follows. We start with χ̃ = χ. First the maximum
Ψ-weight of χ̃ is reduced to M/2 · Ψ∗. For color classes χ̃-1(i) with Ψ-weight larger than
M/2 · Ψ∗, we uncolor subsets X ⊆ χ̃-1(i) as in Corollary 16 and store these sets in a
data structure called Buffer ⊆ 2W . The corollary ensures that all parts X ∈ Buffer have
Ψ-weight about ǫΨ∗ but only very small Φ(j)-weight. Then the minimum Ψ-weight of
χ̃ is increased to ǫΨ∗. If Buffer had enough elements, we could simply assign one part
X ∈ Buffer to each color class with Ψ-weight less than ǫΨ∗. Otherwise, we have to use
Corollary 17 to generate more parts (from color classes with Ψ-weight at least Ψ∗/2). Note
that the parts generated by this corollary areM times more costly than the parts generated
by Corollary 16. In case that Buffer contained more elements than there were color classes
with weight below ǫΨ∗, we distribute the remaining parts of Buffer greedily among the
color classes. An important observation about our construction that if we assigned more
than one part X to a color class, then all theses parts are as in Corollary 16.

It remains to give a detailed description of the shrinking procedure. As indicated
before, we start with χ̃ = χ. For convenience, we subdivide the procedure into three
phases (subroutines) CutDown, AddTo and ReduceBuffer.

The procedure CutDown is used to reduce the Ψ-weight of a color class by a constant
fraction of Ψ∗. The algorithm will iterate this procedure until each color class of χ̃ has
weight at most M/2 ·Ψ∗.

Procedure CutDown (color i ∈ [k])

// Precondition: M/2 ·Ψ∗ < Ψ χ̃-1(i) ≤M ·Ψ∗

(1.) Compute a subset X of χ̃-1(i) with ǫ ≤ Ψ(X)/Ψ∗ ≤ 3ǫ as in Corollary 16

(2.) Uncolor all vertices of X in χ̃

(3.) Insert set X into Buffer

The procedure AddTo increases the Ψ-weight of color class by assigning a part X ⊆ W
to it. Either part X is an element of Buffer , or X is a subset of some color class χ̃-1(j) as
in Corollary 17. When procedure AddTo is iterated appropriately, we yield a coloring χ̃
with each color class having Ψ-weight at least ǫΨ∗.

Procedure AddTo (color j ∈ [k])

// Precondition: Ψ χ̃-1(j) < ǫ ·Ψ∗

(1.) If Buffer = ∅,
then let i be a color with Ψ χ̃-1(i) ≥ Ψ∗/2,

compute a subset X of χ̃-1(i) with

ǫ ≤ Ψ(X)/Ψ∗ ≤ 3ǫ as in Corollary 17,
else

let X be an arbitrary element of Buffer ,

and remove X from Buffer

(2.) Paint all vertices in X with color j.

21



Finally, the procedure ReduceBuffer is used to empty the buffer in case that Buffer
contained more elements than there were color classes with weight below ǫΨ∗. A part
X ∈ Buffer is simply assigned to a color class with at most average Ψ-weight.

Procedure ReduceBuffer ()

// Precondition: Buffer 6= ∅
(1.) Remove some part X from the Buffer .

(2.) Let j ∈ [k] be a color with Ψ χ̃-1(j) ≤ Ψ∗

(3.) Paint all vertices in X with color j.

Now our shrinking procedure reads as follows.

Procedure Shrink (coloring χ : W → [k])

// Precondition: ‖Ψχ-1‖∞ ≤MΨ∗

(1.) Start with χ̃← χ, and Buffer ← ∅ ⊆ 2W .

(2.) As long as ∃ a color i with Ψ χ̃-1(i) > M/2 ·Ψ∗,

do CutDown (i).

(3.) For every color i with Ψ χ̃-1(i) < ǫΨ∗,

do AddTo (i).

(4.) Until Buffer = ∅,
do ReduceBuffer ().

// Assert: χ̃ is a total coloring of W with ǫΨ∗ ≤ Ψχ̃-1(i) ≤M/2 ·Ψ∗ for all i ∈ [k].

(5.) For each color i ∈ [k],

compute a subset Xi of χ̃-1(i) as in Cor. 18

with ǫΨ∗ ≤ Ψ(Xi) ≤ ǫΨ∗ + ‖Ψ‖∞.

(6.) Set W0 := X1 ∪ . . . ∪Xk and W1 := W \W0.

(7.) Return the colorings χ0 := χ̃|W0
and χ1 := χ̃|W1

.

The assertion before step (5.), which is easily seen to hold, and the fact Ψ(Xi) − ǫΨ∗ ∈
[0, ‖Ψ‖∞] ⊆ [0, ǫ5Ψ∗] imply the claim below (for sufficiently small ǫ).

Claim 1. If χ0 and χ1 are the colorings computed by Shrink (χ), then χ0 is almost strictly
balanced with ǫΨ∗ ≤ Ψχ-1

0 (i) = Ψ(Xi) ≤ ǫΨ∗ + ‖Ψ‖∞ and χ1 satisfies ‖Ψχ-1
1 ‖∞ ≤M ·Ψ∗

1,
where Ψ∗

1 := Ψ(W1)/k is the average Ψ-weight of a k-coloring of W1.

Proof: By construction, coloring χ0 fulfills the claim. To see that the claim holds for
χ1, we observe Ψ(W1)/k ≥ Ψ(W )/k − ǫΨ∗ − ‖Ψ‖∞. So it holds Ψ∗

1 ≥ (1− ǫ− ǫ5)Ψ∗, and
therefore ‖Ψχ-1

1 ‖∞ ≤M/2 ·Ψ∗ ≤MΨ∗
1 for all sufficiently small ǫ > 0. �

The next claim observes a simple but crucial property of the algorithm. The colors
are naturally divided into donators and receivers. Formally, let Source ⊆ [k] be the set of
colors i with χ-1(i)\χ̃-1(i) 6= ∅, and Sink ⊆ [k] be the set of colors j with χ̃-1(j)\χ-1(j) 6= ∅.

Clearly, Source consists exactly of the colors for which we called procedure CutDown,
or that were selected in step (1.) of AddTo. Similarly, Sink consists of all colors for which
we called procedure AddTo, or that were selected in step (2.) of ReduceBuffer. For
sufficiently small ǫ, no color can be both a source and a sink:

Claim 2. Source ∩ Sink = ∅
Proof: We distinguish two cases.
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First, we consider the case that CutDown created more Buffer -parts than were used
by AddTo – so ReduceBuffer was called at least once. Then Source consists only of
those colors i ∈ [k] for which CutDown(i) has been called. Hence for all colors i ∈ Source ,

Ψχ̃-1(i) ≥ (M/2 − 3ǫ)Ψ∗ > Ψ∗

is an invariant of the algorithm. From this invariant it follows that Source contains no
color j ∈ [k] for which AddTo(j) was called or that was selected in step (2) of procedure
ReduceBuffer. So, Source and Sink are disjoint sets.

In the case that ReduceBuffer was never called by the algorithm, Sink consists only
of those colors j ∈ [k] for which AddTo(j) was called. So for all colors j ∈ Sink ,

Ψχ̃-1(j) ≤ (ǫ+ 3ǫ)Ψ∗ < Ψ∗/2

is an invariant of the algorithm. This invariant implies that Source cannot contain a color
i ∈ [k] for which CutDown(i) was called or that was selected in step (1) of procedure
AddTo. Therefore, Source and Sink must be mutually exclusive. �

Based on Claim 2, we show bounds on the Φ(j)-weight and boundary cost of the color
classes in χ̃. These bounds will imply that the maximum Φ(j)-measure and the maximum
boundary cost of both χ0 and χ1 are as required by the lemma.

Consider any source color i ∈ Source . Every time when its color class is changed by
the algorithm, the Ψ-weight of χ̃-1(i) decreases by at least ǫΨ∗. Since the initial weight
is at most M · Ψ∗, there can be at most M/ǫ such changes. Thus, the increase of ∂χ̃-1(i)

is bounded by M/ǫ · OM (π1/p(χ-1(i))) = OM (‖πχ-1‖1/p
∞ ), because each applied cut has

cost OM (π1/p(χ̃-1(i))). This observation shall imply that for the analysis of our shrinking
algorithm, the boundary cost function ∂ behaves like one of the vertex measures Φ(j)

modulo additive terms of order ‖πχ-1‖1/p
∞ . So we restrict ourselves in the following to show

the requirements of the lemma only for Φ(j). The arguments for ∂ are analogous.
Consider a non-sink color i, and let U = χ̃-1(i) be its color class in step (5.) of

procedure Shrink. By the assertion before step (5.), it holds Ψ∗/ΨU ≥ 2/M . Thus
χ-1

1 (i) = U \ Xi has Φ(j)-weight at most (1 − 2ǫ
9M )Φ(j)(U) ≤ (1 − ǫ−10)Φ(j)(U) by Corol-

lary 18. Since the considered color i is not a Sink , we have Φ(j)χ̃-1(i) ≤ ‖Φ(j)χ-1‖∞
throughout the algorithm. So Φ(j)χ-1

1 (i) is as required for i 6∈ Sink .

Claim 3. For non-sink colors i and all j ∈ [r], it holds Φ(j)χ-1
0 (i) ≤ ‖Φ(j)χ-1‖∞ and

Φ(j)χ-1
1 (i) ≤ (1− ǫ10)‖Φ(j)χ-1‖∞

To show the corresponding claim for sink colors, we need to estimate the Φ(j)-weight
of the parts X ⊆W that get transfered from Source colors to Sink colors.

Two types of parts are considered by the algorithm. By Corollary 16, we have for any
part X that gets inserted into Buffer ,

Φ(j)(X) ≤ 18ǫ/M · ‖Φ(j)χ-1‖∞, (13)

and by Corollary 17, any parts X that is painted in step (2.) of procedure AddTo satisfies

Φ(j)(X) ≤ 18ǫ · ‖Φ(j)χ-1‖∞. (14)

Since the parts of the second type are much more expensive (in terms of Φ(j)-weight)
than the parts of the first type only the following observations allows us to derive the
required bound on Φ(j)χ-1

1 (i) for i ∈ Sink.

23



Key-Observation: For a sink color i, either a) all received parts are of the first type, or
b) throughout the algorithm color i received only one part and hence Ψχ̃-1(i) ≤ ǫΨ∗+3ǫΨ∗,
because this parts had Ψ-weight at most 3ǫΨ∗.

We show the required bound on Φ(j)χ-1
1 (i) by distinguishing these two cases.

Case a): It is an invariant of the algorithm that sink colors have color classes of Ψ-
weight at most Ψ∗+3ǫΨ∗ ≤ 2Ψ∗. And since each received part has Ψ-weight at least ǫΨ, a
sink color i can receive no more than 2/ǫ parts. In the current case, all of these parts have
Φ(j)-weight at most 18ǫ/M · ‖Φ(j)χ-1‖∞. Hence in step (5.) of procedure Shrink, it holds
Φ(j)(U) ≤ (1+36/M)‖Φ(j)χ-1‖∞ for the i-th color class U = χ̃-1(i). Since Ψ∗/Ψ(U) ≥ 1/2,
we have by Corollary 18

Φ(j)(U\Xi)/‖Φ(j)χ-1‖∞ ≤ (1− ǫ/18)(1 + 36ǫ5) ≤ 1− ǫ10

for sufficiently small ǫ > 0. Thus the Φ(j)-weight of χ-1
1 (i) = U \Xi is as required by the

lemma.
Case b): By our key observation, we have Ψ∗/Ψ(U) ≥ 1/4ǫ for the i-th color class

U = χ̃-1(i) at the end of procedure Shrink. It also holds Φ(j)(U) ≤ (1 + 18ǫ)‖Φ(j)χ-1‖∞,
since only one part was received by color i in the course of the algorithm. By Corollary 18,
the Φ(j)-weight of χ-1

1 (i) = U \Xi satisfies for sufficiently small ǫ > 0,

Φ(j)(U\Xi)/‖Φ(j)χ-1‖∞ ≤ (1− ǫ
9 · 1

4ǫ)(1 + 18ǫ) ≤ 1− ǫ10

This case distinction showed for every i ∈ Sink:
Claim 4. Φ(j)χ-1

1 (i) ≤ (1− ǫ10)‖Φ(j)χ-1‖∞.

The discussion for case a) above, implies that any sink color i receives at most con-
stantly many parts. Then it follows from relations (13) and (14), that Φ(j)χ-1

1 (i) =
OM (‖Φ(j)χ-1‖∞).

The fact that any color class is altered only constantly often also shows that the al-
gorithm can be implemented to run in time OM (t(|G[W ]|)), provided that appropriate
data structures are used. For example in step (2.) of procedure Shrink, the colors with
Ψχ̃-1(i) > M/2 ·Ψ∗ should be maintained by a stack, so that such colors can be found in
constant time.

6 Splittability of grid graphs

For the case of unit-costs, many graph classes like fixed-minor free graphs and finite element
meshes have bounded p-splittability for some p > 1 (cf. Appendix A.3, Remark 36). In
case of arbitrary edge costs, only planar graphs were known to have splitting sets of low
costs.

There is a naive way to generalize existing splittability results for the unit costs case to
the case of arbitrary edge costs. Obviously, it holds σp(G, c) ≤ σp(G,1E) · ‖c‖∞ · ‖1/c‖∞
for every graph G = (V,E) and arbitrary edge costs c : E → R>0 (assuming without loss
of generality c(e) > 0 for all edges e ∈ E). In this section, we show that the situation for
d-dimensional “grid graphs” is better. A grid graph in a d-dimensional space is a graph
G = (V,E) with V ⊆ Z

d and ‖x − y‖1 = 1 for all edges {x,y} ∈ E. The theorem of
this section implies that σp(G, c) = Od(log

1/d(φ) · σp(G,1)) if G is a d-dimensional grid,
p = d/(d − 1) and φ := ‖c‖∞ · ‖1/c‖∞ is the ratio of the maximum cost of an edge to the
minimum cost of an edge.

24



Although grids form a very restrictive graph family, many graphs arising in practical
applications, e.g., in climate simulation (cf. Introduction), are “close” to grid graphs and
might be embedded into grids such that boundary costs are preserved up to constant
factors.

Furthermore, the results in this section can be seen as a starting point for further
investigations of the splittability for more general non-planar graphs with arbitrary edge
costs. Note that for d ≥ 3, the class of d-dimensional grids does not exclude any minor
and hence is “far” from being planar.

We state the main theorem of this section.

Theorem 19. Let G = (V,E) be a d-dimensional grid graph with edge costs c : E → R>0

and vertex weights w : V → R+. Then, for all splitting values w∗ with 0 ≤ w∗ ≤ ‖w‖1,
there exists a w∗-splitting set U ⊆ V of cost

O(d · log1/d(φ+ 1) · ‖c‖p)

where p := d/(d − 1) and φ := maxE c/minE c is the fluctuation of c. Such a splitting set
can be computed in time O(n log φ).

And since the class of d-dimensional grid graphs is closed under taking subgraphs, we
have

σp(G, c) = Od(log
1/d(φ+ 1)).

In the following, let G = (V,E), c : E → R>0, w : V → R+, and w∗ be as in Theorem 19.
We aim for a recursive algorithm to find a w∗-splitting set in G with small boundary cost.

The idea of the algorithm is as follows. We consider a coarser graph that is obtained
by identifying vertices of G, i.e., for a mapping ϕ : V → Z

d, the coarser graph G/ϕ =
(V/ϕ,E/ϕ) has the non-empty pre-images ϕ−1(a) = {x ∈ V | ϕ(x) = a} ∈ V/ϕ as nodes
and contains an arc {ϕ−1(a), ϕ−1(b)} ∈ E/ϕ if and only if an edge {x,y} of G connects
the two disjoint sets ϕ−1(a) and ϕ−1(b). Formally,

V/ϕ :=
{

ϕ−1(a) 6= ∅ | a ∈ Z
d
}

,

E/ϕ :=
{

{Q,R} ⊆ V/ϕ | x ∈ Q,y ∈ R, {x,y} ∈ E,Q 6= R
}

The weights and costs are translated to G/ϕ in a straight-forward manner; we define
w/ϕ(Q) := w(Q) for each Q ∈ V/ϕ and c/ϕ(Q,R) :=

∑

x∈Q,y∈R c(x,y). In this coarser
graph, which shall also be a grid, we then use a trivial algorithm to find a splitting set
S ⊆ V/ϕ and a node Q ∈ V/ϕ \ S with w/φ(S) ≤ w∗ < w/φ(S) + w(Q). So S has the
desired weight w∗ up to the weight of Q. Now the idea is to proceed recursively in order
to compute a (w∗−w/ϕ(S))-splitting set U ′ ⊆ Q in G′ := G[Q]. Then, U :=

⋃S ∪U ′ will
be the required w∗-splitting set in G.

To bound the boundary cost ∂U of the resulting splitting set, our reasoning will be as
follows. Since any boundary edge δ(U) is contained in either δ(

⋃S), δ(Q), or δG[Q](U
′),

the boundary cost satisfies ∂U ≤ ∂(
⋃S ∪Q)+∂QU

′. In our analysis we shall use the crude
over-estimate ∂(

⋃S ∪Q) ≤ ‖c/ϕ‖1 to deduce that ∂U is at most ‖c/ϕ‖1 + ∂QU
′.

As we will see, there are canonical choices of ϕ that guarantee a good upper bound on
‖c/ϕ‖1 (cf. Lemma 20). However, to make the recursion work, we need to ensure that a
splitting set in G′ = G[Q] is somehow easier to obtain and less costly. It seems difficult to
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do so, and therefore we circumvent this issue. The recursive instance does not use the same
edge costs c but “reduced” edge costs c′ : E′ → R>0 with c′e := (ce− 1)/2 for all edges with
ce > 1. All edges with ce ≤ 1 are discarded in G′. With this choice of c′, we end up with
an empty graph after O(log ‖c‖∞) levels of recursion. So there is some notable progress
when going to recursive instances. On the other hand, we need to take into account the
edges of G that were discarded in G′, when we want to deduce a bound on ∂QU

′ from
∂′(U ′), where ∂′ denotes the boundary costs in G′ with respect to c′. We use again a
rough estimate ∂QU

′ ≤ |δG[Q](U
′)| + 2∂′U ′, which holds with equality only if δG[Q](U

′)
contains no edge e with c(e) < 1. In order to control |δG[Q](U

′)|, we shall use specific
properties of Q ∈ V/ϕ that follow from our choice of G/ϕ, and we will exploit an invariant
of our recursive algorithm, namely that the computed splitting sets are “monotone” (cf.
Lemma 21-23).

Obtaining a coarser graph with low edge costs. Grid graphs can be coarsened
nicely in a geometrically intuitive way. We partition the d-dimensional space R

d in “half-
open” hyper-cubes x + [0, ℓ)d of measure ℓd, where x + Y := {x + y | y ∈ Y } denotes the
Minkowski sum of x ∈ R

d and Y ⊆ R
d. This partition is in such a way that each face of a

cube in the partition is also the face of another cube. Then, we identify all vertices of grid
G that lie in the same cube.

Formally, we define mappings

ϕ(ℓ)
α : Z

d → Z
d, a 7→ ⌊(a + (α− 1) · 1d)/ℓ⌋

for positive integers α, ℓ ∈ N, where 1d ∈ R
d is the vector of all ones and ⌊x⌋ is the

integer vector with components ⌊xi⌋. Then, the graph G/ϕ
(ℓ)
α is a coarser graph of the

kind described above.
We say that a graph G/ϕ is ℓ-coarse if ϕ = ϕ

(ℓ)
α for some α ∈ [ℓ]. The lemma below

observes that we can always find an ℓ-coarse graph with low edge costs.

Lemma 20. For each positive integer ℓ, there exists an ℓ-coarse graph G/ϕ with

‖c/ϕ‖1 ≤ ‖c‖1/ℓ

Proof. Since each edge of G accounts for exactly one of the cost functions c/ϕ
(ℓ)
1 through

c/ϕ
(ℓ)
ℓ , we have ‖c/ϕ(ℓ)

1 ‖1 + . . . + ‖c/ϕ(ℓ)
ℓ ‖1 = ‖c‖1. Hence, ‖c/ϕ(ℓ)

α ‖1 ≤ ‖c‖1/ℓ for some
α ∈ [ℓ].

We say that an ℓ-coarse graph G/ϕ is cheap if ‖c/ϕ‖1 ≤ ‖c‖1/ℓ.

Monotone sets. For a set Q ⊆ Z
d, we say that a subset W ⊆ Q is monotone (in Q), if

for all x ∈ Q and y ∈ W with x ≤ y, it holds x ∈ Q, where x ≤ y means that we have
xi ≤ yi for each component of x and y.

We shall see later that it is an invariant of our recursive algorithm that the computed
splitting set U ′ of G′ = G[Q] is monotone in Q ∈ V/ϕ. The next lemma allows us to bound
|δG[Q](U

′)|, provided that G/ϕ is ℓ-coarse.

Lemma 21. Let Q ⊆ Z
d be a node of an ℓ-coarse graph G/ϕ, i.e., Q ⊆ x+[0, ℓ)d for some

x ∈ Z
d.

Then for any monotone set W in Q, it holds |δG[Q](W )| ≤ dℓd−1.
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Proof. For each edge ab ∈ δG[Q](W ), consider the line L = {λa+(1−λ)b | λ ∈ R} through
this edge. By monotonicity of W , no other edge of δG[Q](W ) is contained in L. On the
other hand, we can uniquely identify L by the point in Q∩L with the smallest coordinates
(the point at which L “leaves” Q). Notice that the points in L ∩Q can differ only in one
component and therefore agree in d− 1 components. So if the direction of L is fixed, the
“lowest” point in L ∩Q is uniquely determined by its coordinates in d− 1 components.

Any of these “leaving” points can be generated as follows. First, we select one of the d
components, say the i-th component, that needs to be smallest. Then, there are at most
ℓd−1 choices for the entries of the other components. No further choices remain, since the
i-th component needs to be smallest. Thus, there are at most d · ℓd−1 edges in the cut
δG[Q](W ).

The lemmata below shall imply the invariant that U ′ is a monotone set in Q.

Lemma 22. If a1, . . . ,an is a lexicographic ordering of a set S ⊆ Z
d, then for all i ∈ [n],

the subset {a1, . . . ,ai} is monotone in S.

Proof. A vector x is lexicographically less than a vector y if it holds x ≤ y.

For every node R = ϕ−1(a) ⊆ Z
d of G/ϕ, we conveniently define ϕ(R) := a.

Lemma 23. Let G/ϕ be an ℓ-coarse graph of grid G = (V,E) and Q1, . . . , Qi ∈ V/ϕ be a se-
quence of distinct nodes of G/ϕ. Suppose both {ϕ(Q1), . . . , ϕ(Qi−1)} and {ϕ(Q1), . . . , ϕ(Qi)}
are monotone sets in ϕ(V/ϕ) := {ϕ(R) | R ∈ V/ϕ}. Then for any monotone set W in Qi,
the set Q1 ∪ . . . ∪Qi−1 ∪W is monotone in V .

Proof. Notice thatQ1∪. . .∪Qi−1 is monotone in V , since {ϕ(Q1), . . . , ϕ(Qi−1)} is monotone
in ϕ(V/ϕ) and ϕ is monotone, i.e., ϕ(x) ≤ ϕ(y) for all x ≤ y. And since W is monotone
in Qi, it only remains to verify that for all y ∈ W and x ∈ V \W with x ≤ y, it holds
x ∈ Qj for some j < i. But this follows from the monotonicity of {ϕ(Q1), . . . , ϕ(Qi)} in
ϕ(V/ϕ) and from the monotonicity of ϕ.

Final algorithm. We now have gathered all ingredients of the algorithm for computing
monotone splitting sets in grid graphs. However, we have not yet determined how ℓ should
be chosen. Remember that we derived the relation

∂U ≤ ‖c/ϕ‖1 + |δG[Q](U
′)|+ 2∂′U ′

between the cost of U in G and the cost of U ′ in G′. From Lemma 20 and Lemma 21, it
would follow ∂U ≤ ‖c‖1/ℓ+dℓd−1+2∂′U ′. When we choose ℓ := (‖c‖1/d)1/d, the expression
is minimized and we obtain

∂U ≤ 2d1/d‖c‖1−1/d
1 + 2 · ∂′U ′. (15)

Procedure GridSplit (grid graph G = (V,E), edge costs c : E → R>0, w
∗ ∈ R+)

(1.) Compute a cheap ℓ-coarse graph G/ϕ of G with ℓ := max{⌈(‖c‖1/d)1/d⌉, 1}
(Lem. 20)

(2.) Find an ordering Q1, . . . , Qq of the vertices of G/ϕ such that ϕ(Qj) is
lexicographically less than ϕ(Qj+1) for all j ∈ [q − 1]
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(3.) Determine a set S = {Q1, . . . , Qi−1} with w(
⋃S) ≤ w∗ < w(

⋃S) +w(Qi).

(4.) Trivial case: If ℓ = 1 then return a w∗-splitting set among
⋃S and

⋃S ∪Qi

(5.) Recursively compute a monotone splitting set

U ′ := GridSplit

(

G′, c′, w∗ − w(
⋃

S
)

,

where G′ := G[Q] \ {e ∈ E | c(e) ≤ 1} and c′e := (ce − 1)/2 for all e ∈ E(G′)

(6.) Return the w∗-splitting set U :=
⋃S ∪ U ′

Notice that GridSplit terminates after O(log ‖c‖∞) levels of recursion. The maximum
cost of an edge decreases by a factor of at least 2 with every level. And as soon as ‖c‖∞ ≤ 1,
we have ‖c′‖∞ = 0 and terminate in the next level as ℓ′ = max{⌈(‖c′‖1/d)1/d⌉, 1} = 1.

Before bounding the cost of the splitting set computed by GridSplit , we show that
the splitting set is indeed monotone in V . The monotonicity of the splitting set shall follow
from Lemma 22 and Lemma 23.

Lemma 24. The splitting set computed by GridSplit is monotone in V .

Proof. By induction on ‖c‖∞.
In the case ℓ = 1, the 1-coarse graph G/ϕ coincides with G, since ϕ is the iden-

tity. Now ϕ(Q1), . . . , ϕ(Qq) is a lexicographic ordering of V . By Lemma 22, both
⋃S =

{ϕ(Q1), . . . , ϕ(Qi−1)} and
⋃S ∪Qi = {ϕ(Q1), . . . , ϕ(Qi)} are monotone in ϕ(V/ϕ) = V .

For ℓ > 1, the splitting set U ′ is monotone in Q by induction hypothesis. Also, it
holds that both {ϕ(Q1), . . . , ϕ(Qi−1)} and {ϕ(Q1), . . . , ϕ(Qi)} are monotone in ϕ(V/ϕ) by
Lemma 22. So we can apply Lemma 23 and obtain that

⋃S ∪ U ′ = Q1 ∪ . . . ∪Qi−1 ∪ U ′

is monotone in V .

Now we are armed to show our first (technical) bound on the boundary cost ∂U , which
is obtained by unfolding the recurrence (15) of procedure GridSplit.

Lemma 25. If GridSplit is applied to a grid graph G = (V,E) with edge costs c : E →
R+, then the returned monotone splitting set U ⊆ V satisfies

∂U ≤ 2dd1/d
(

‖c‖∞ + 1 +
∑

0≤i≤log(‖c‖∞+1)

2i/d‖c|Ei
‖1−1/d
1

)

where Ei := {e ∈ E | c(e) ≥ 2i − 1}.

Proof. By induction on ⌊log(‖c‖∞ + 1)⌋.
For ℓ = 1, we have ‖c‖1 ≤ d1/d and therefore ∂U ≤ d1/d. So, we can assume ℓ =

⌈(‖c‖1/d)1/d⌉ > 1 and thus ‖c‖1/d ≤ ℓd ≤ 2d‖c‖1/d.
In case of ‖c‖∞ ≤ 1, it holds ∂QU

′ ≤ |δG[Q](U
′)|. Since U ′ is monotone by Lemma 24 in

Q, we have by Lemma 21 that |δG[Q](U
′)| ≤ dℓd−1 ≤ 2d−1d1/d‖c‖1−1/d

1 . As G/ϕ is a cheap

ℓ-coarse grid, the edge costs ‖c/ϕ‖1 are at most ‖c‖1/ℓ ≤ d1/d‖c‖1−1/d
1 and thus we have

∂U ≤ ‖c/ϕ‖1 + ∂QU
′ ≤ 2dd1/d‖c‖1−1/d

1 as required.

For the rest of the proof, we can assume ‖c‖∞ > 1 and ∂U ≤ 2dd1/d‖c‖1−1/d
1 + 2∂′U ′

where ∂′ are the boundary costs inG′ with respect to edge costs c′. By induction hypothesis,

it holds ∂′U ′ ≤ 2dd1/d(‖c′‖∞ + 1 +
∑

0≤i≤r 2i/d‖c′|E′

i
‖1−1/d
1 ), where r := log(‖c‖′∞ + 1) =
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log(‖c‖∞ + 1) − 1 and E′
i := {e ∈ E′ | 2i − 1 ≤ c′e = (ce − 1)/2} = Ei+1. So, it holds

‖c′|E′

i
‖1 ≤ ‖c|Ei+1

‖1/2 and thus 2 · 2i/d‖c′|E′

i
‖1−1/d
1 ≤ 2(i+1)/d‖c|Ei+1

‖1−1/d
1 . Therefore, we

have
∂U ≤ 2dd1/d‖c‖1−1/d

1 + 2dd1/d
(

‖c‖∞ + 1 +
∑

0≤i≤r

2i+1/d‖c|Ei+1
‖1−1/d
1

)

as required.

Using Hölder’s inequality, the lemma below arrives at a bound on
∑

i 2
i/d‖c|Ei

‖1−1/d
1 .

Notice that by scaling the edge cost, we can achieve ‖1/c‖∞ = 1 and therefore φ =
‖c‖∞ · ‖1/c‖∞ = ‖c‖∞. So the next lemma implies the bounds on the p-splittability of grid
graphs from Theorem 19.

Lemma 26. For edge costs c : E → R>0 with ‖1/c‖∞ = 1, it holds

⌊log(‖c‖∞+1)⌋
∑

i=0

2i/d‖c|Ei
‖1−1/d
1 = Od

(

(log1/d(2‖c‖∞) · ‖c‖d/(d−1)

)

Proof. Let r : E → N0 be the function that assigns each edge e ∈ E to the largest index
r(e) := ⌊log(ce + 1)⌋ such that e ∈ Er(e). Let s := ‖r‖∞ ≤ log(2‖c‖∞) denote the largest
index with Es 6= ∅. Since ce ≥ 1 for each edge e ∈ E, it holds r(e) ≤ log(2ce) and thus

ce ·
∑

0≤i≤r(e)

2i/(d−1) = Od(ce · 2r(e)/(d−1)) = Od(c
d/(d−1)
e ) (16)

Hence, the following sum satisfies

∑

0≤i≤s

2i/(d−1)‖c|Ei
‖1 =

∑

e∈E

ce
∑

0≤i≤r(e)

2i/(d−1) (16)
= Od(

∑

e∈E

cd/(d−1)
e ) (17)

Using Hölder’s inequality and relation (17) yields for p = d/(d − 1) (and q = d),

s
∑

i=0

1 · (2i/(d−1)‖c|Ei
‖1)1−1/d = ‖r‖1/d

∞ · (
s

∑

i=0

2i/(d−1)‖c|Ei
‖1)1−1/d (17)

= Od(s
1/d‖c‖p) (18)

From relation (18), the lemma follows as 2i/d‖c|Ei
‖1−1/d
1 = 1 · (2i/(d−1)‖c|Ei

‖1)1−1/d.

We conclude the section with an analysis of the running time of procedure GridSplit.

Lemma 27. Procedure GridSplit runs in time O(m log φ) for a connected grid graph G
of size m with edge costs c of fluctuation φ.

Proof. We assume that the edge costs are scaled in such a way that the minimum edge
cost is equal to 1 and so it holds φ = ‖c‖∞. Then the number of iterations is bounded by
O(log φ).

It remains to show that the running time of one iteration is linear in the size of the
grid. Steps (3)-(6) are easily seen to run in linear time. In step (1), finding a cheap ℓ-coarse
graph is trivial if ℓ is much larger than the size of G, because for a connected grid, one of

the mappings ϕ
(m)
α assigns the same point to all grid vertices.
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So we can assume ℓ = O(m) for finding a cheap ℓ-coarse graph in step (1). For each
edge ab ⊆ Z

d with ‖a−b‖1 = 1, we can determine in constant time the index α ∈ [ℓ] with

ϕ
(ℓ)
α (a) 6= ϕ

(ℓ)
α (b). Thus, the function f : [ℓ]→ R+ with f(α) := ‖c/ϕ(ℓ)

α ‖1 can be computed
in linear time by scanning through all edges of G. Now we can find a cheap ℓ-coarse graph
by finding the minimum of f(α) over all α ∈ [ℓ].

In step (2) of GridSplit , we need to sort points from Z
d by lexicographic order. The

range of the coordinates of the considered points is polynomial, since G is connected (in
fact, the range is linear). So we can use radix sort to find a lexicographic ordering in linear
time.

7 Conclusion

We showed that any graph with edge costs and vertex weights can be partitioned into a
given number of almost equally-weighted parts in such a way that the maximum boundary
cost is small, provided that the graph has small splittability.

Using an observation from [4], namely that the boundary cost function can approxi-
mately be modeled as a (dynamic) weight-function on the vertices, we reduced the min-max
boundary decomposition problem to a multi-balanced partitioning problem. For the case
of arbitrary edge costs, it was necessary to balance the partition also with respect to the
splitting cost measure.

Finally, we developed an algorithm based on a “shrink-and-conquer”-approach for im-
proving the weight-balancedness of a partition while maintaining the balanced with respect
to a number of other measures, including the boundary cost function.

We remark that, using our general framework, one can devise a multi-balanced version
of Theorem 4: Every graph G with edge costs c, measures Ψ and Φ(1) through Φ(r) can be
partitioned into k parts such that 1.) the Ψ-weight of each part differs from the average by
at most (1−1/k)‖Ψ‖∞, 2.) for each measure Φ(j), the maximum Φ(j)-weight of the partition
is at most proportional to the average Φ(j)-weight, and 3.) the maximum boundary cost
of the partition is at most proportional to σp · (‖c‖p/k1/p + ∆c).

A possible direction of further work suggested by this thesis is to investigate the question
whether more general graphs have separator theorems when one allows arbitrary edge costs.
Only planar graphs and grid graphs are known to have separator theorems in this case.
And our separator theorem for grid graphs still leaves space for improvement.
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A Further proofs

A.1 Shrinking cuts

In the following we shall show the lemmata needed for deriving Corollaries 16-18.
Let the function π : V → R+ be the p-splitting cost measure (cf. Definition 10) of the

graph G = (V,E) with measures Ψ, and Φ(1) through Φ(r).

Lemma 28. For every U ⊆ V and γ ∈ [0, 1] with ‖Ψ‖∞/Ψ(U) ≤ γ/3r, there exists a
partition {X1, . . . ,Xℓ} of U with r/γ ≤ ℓ ≤ 3r/γ and ∂UXi = O(r/γ · π1/p(U)) such that

γ

3r
≤ Ψ(Xi)

Ψ(U)
≤ γ

r
for i ≤ ℓ.

Proof. We just need to apply the following procedure with ψ∗ := γ/3r ·Ψ(U).

Procedure IterativePartition (vertex set U ⊆ V , ψ∗ ∈ R+)

// Precondition: ‖Ψ‖∞ ≤ ψ∗

(1.) Start with X ← U and i← 1

(2.) Until Ψ(X) ≤ 3ψ∗ repeat: // Invariant: Ψ(X) ≥ ψ∗

(a) Let Xi be a splitting set in G[X] with ∂XXi ≤ π1/p(X) and
ψ∗ ≤ Ψ(Xi) ≤ ψ∗ + ‖Ψ‖∞

(b) Update X ← X \Xi and increment i← i+ 1

(3.) Set ℓ := i and Xℓ := X

(4.) Return the partition {X1, . . . ,Xℓ} of U
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All parts Xi, especially Xℓ, fulfill the condition ψ∗ ≤ Ψ(Xi) ≤ 3ψ∗. Hence, it holds
ℓ ≤ Ψ(U)/ψ∗ = 3r/γ and ℓ ≥ Ψ(U)/3ψ∗ = r/γ. The total cost of edges that are cut by
the algorithm does not exceed ℓ · π1/p(U). It follows ∂UXi = O(r/γ · π1/p(U)).

Lemma 29. For U and γ as in Lemma 28, there exists a subset X of U with ∂UX =
O(r/γ · π1/p(U)) such that

γ

3r
≤ Ψ(X)

Ψ(U)
≤ γ

r
,

Φ(j)(X)

Φ(j)(U)
≤ γ for all j ∈ [r].

Proof. By Lemma 28 there exists ℓ ≥ r/γ disjoint subsets Xi of U with Ψ-weight as
required. By the pigeonhole-principle, one of those parts Xi has to fulfill Φ(j)(Xi) ≤
γ · Φ(j)(U) for all j ∈ [r].

The lemma below is dual to Lemma 29.

Lemma 30. For U and γ as in Lemma 28, there exists a subset X of U with ∂UX =
O(r2/γ · π1/p(U)) such that

γ ≤ Ψ(X)

Ψ(U)
≤ γ +

‖Ψ‖∞
Ψ(U)

,
Φ(j)(X)

Φ(j)(U)
≥ γ

3r
for all j ∈ [r].

Proof. By Lemma 28 there exists a partition of U into parts X1, . . . ,Xℓ with ℓ ≤ 3r/γ and
Ψ(Xi) ≤ γ/r · Ψ(U). Without loss of generality we may assume that for all j ∈ [r], there
is a part Xi with index i ≤ r and maximum Φ(j)-weight among all parts. Formally,

max
1≤i≤min{r,ℓ}

Φ(j)(Xi) = max
1≤i≤ℓ

Φ(j)(Xi) ≥ Φ(j)(U)/ℓ for all j ∈ [r].

It follows for the union X̄ := X1 ∪ . . . Xr of the first r parts that Φ(j)(X̄)/Φ(j)(U) ≥ γ/3r
for all j ∈ [r]. The Ψ-weight of X̄ cannot exceed r · γ/r ·Ψ(U) = γΨ(U). Also the cost of
the boundary edge of X̄ within G[U ] satisfies ∂U (X) = O(r · r/γ · π1/p(U)).

To fulfill the constraint Ψ(X) ≥ γ ·Ψ(U) we need to find a subset S of U\X̄ such that
Ψ(X̄∪S) ≥ γ ·Ψ(U). So let S ⊆ U\X̄ be a splitting set in G[U\X̄ ] with ∂U\X̄(S) ≤ π1/p(U)

and γ ·Ψ(U) ≤ Ψ(S) + Ψ(X̄) ≤ γ ·Ψ(U) + ‖Ψ‖∞. Then X := X̄ ∪ S is a subset of U that
fulfills all requirements of the lemma.

From Lemma 29 and Lemma 30, we draw the three corollaries below. Let ǫ > 0 be suf-
ficiently small and M := 1/ǫ5, where the precise meaning of “sufficiently” depends only on
r. So in Section 5 we can assume that ǫ and M are absolute constants. Moreover, let Ψ∗ be
a real number between 0 and ‖Ψ‖avg such that ‖Ψ‖∞ ≤ ǫ5Ψ∗. This condition corresponds
to the condition on ‖Ψ‖∞ in the definition of shrinking procedures (cf. Definition 13).

In order to achieve a geometric decrease of the boundary costs, we choose the measure
Φ(r) : V → R+ such that Φ(r)(v) := c(δ(v) ∩ δ(U)), where U ⊆ V is as in the corollaries
below. Then corollaries 16-18 are instantiations of the corollaries below for r = 3.

Corollary 31. For every U ⊆ V with M/2 ≤ Ψ(U)/Ψ∗ ≤ M , there exists a subset X of
U with ∂UX = OM (π1/p(U)) and ǫ ≤ Ψ(X)/Ψ∗ ≤ 3ǫ such that

Φ(j)(X) ≤ (6rǫ/M) · Φ(j)(U),

∂X ≤ (6rǫ/M) · ∂U +OM (π1/p(U)).
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Corollary 32. For every U ⊆ V with 1/2 ≤ Ψ(U)/Ψ∗ ≤M , there exists a subset X of U
with ∂UX = OM (π1/p(U)) and ǫ ≤ Ψ(X)/Ψ∗ ≤ 3ǫ such that

Φ(j)(X) ≤ 6rǫ · Φ(j)(U),

∂X ≤ 6rǫ · ∂U +OM (π1/p(U)).

Corollary 33. For every U ⊆ V with ǫ ≤ Ψ(U)/Ψ∗ ≤ M , there exists a subset X of U
with ∂UX = OM (π1/p(U)) and ǫ ≤ Ψ(X)/Ψ∗ ≤ ǫ+ ‖Ψ‖∞/Ψ∗such that

Φ(j)(U\X) ≤ (1− ǫ/3r · Ψ∗

Ψ(U)
) · Φ(j)(U),

∂(U\X) ≤ (1− ǫ/3r · Ψ∗

Ψ(U)
) · ∂U +OM (π1/p(U)).

We remark that one can obtain such setsX as in the corollaries above in timeOM (t(|G[U ]|)).

A.2 Two bin-packing procedures

Proof of Lemma 15. We are given two colorings χ0 and χ̂1 of respective disjoint vertex
sets W0 and W1 with W0 ∪W1 = W . Let w∗ := w(W )/k denote the average weight of
a k-coloring of W . Similarly, let w∗

0 := w(W0)/k and w∗
1 := w(W1)/k be the average

weight of k-colorings in W0 and W1, respectively. By our preconditions, we have wχ-1
0 (i) =

w∗
0 +O(‖w‖∞) and wχ̂-1

1 (i) = w∗
1 +O(‖w‖∞). So it holds for every color class χ-1

0 (i)∪χ-1
1 (i)

of the direct sum χ0 ⊕ χ̂1,

wχ-1
0 (i) + wχ̂-1

1 (i) = w∗
0 + w∗

1 +O(‖w‖∞) = w∗ +O(‖w‖∞). (19)

In the following, we write more conveniently w1(i) := wχ̂-1(i) for the weight of a color
class in coloring χ̂1. We have the precondition w1(i) ≤ w∗ − ‖w‖∞.

We proceed in two phases to transform χ0 into a coloring χ̃0 with the direct sum χ̃0⊕χ̂1

being almost strictly balanced, i.e., |wχ̃-1
0 (i) + w1(i) − w∗| ≤ 2‖w‖∞ for all i ∈ [k]. We

start with χ̃0 = χ0. In color classes of χ̃0, we uncolor parts X ⊆W0 with ‖w‖∞ ≤ w(X) ≤
2‖w‖∞, until the maximum of wχ̃-1

0 (i)+w1(i) over all i ∈ [k] is at most the average weight
w∗. Then, we re-assign the previously uncolored parts X to color classes in a greedy
manner. It follows that the direct sum χ̃0 ⊕ χ̂1 is almost strictly balanced.

Furthermore, since every considered part X has weight between ‖w‖∞ and 2‖w‖∞, we
can infer from equation (19) that every color class of χ̃0 receives or emits only a constant
number of parts. From this observation it shall follow that the maximum splitting cost of
χ̃0 is at most proportional to the maximum splitting cost of χ0. Similarly, the maximum

boundary cost of χ̃0 is in O(‖∂χ-1
0 ‖∞ + ‖πχ-1

0 ‖
1/p
∞ ).

We now give the the full details of the proof. The procedure below transforms χ0 into
coloring χ̃0.

Procedure BinPack1 (coloring χ0 : W0 → [k], weight function w1 : [k]→ R+)

// Precondition: w1(i) ≤ w∗ − ‖w‖∞ for all i ∈ [k]

(1.) Start with χ̃0 ← χ0, and Buffer ← ∅.
(2.) As long as there exists a color class U = χ̃-1

0 (i) with w(U) + w1(i) > w∗,

compute a splitting set X ⊆ U
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with ‖w‖∞ ≤ w(X) ≤ 2‖w‖∞ and ∂UX ≤ π1/p(U),

uncolor all vertices in X,

and update Buffer ← Buffer ∪ {X}.
(3.) As long as there is a color class U = χ̃-1

0 (i) with w(U) + w1(i) < w∗ − 2‖w‖∞
choose a part X ∈ Buffer ,

paint all vertices in X with color i,

and update Buffer ← Buffer \ {X}
(4.) For all remaining X ∈ Buffer ,

choose a color i ∈ [k] with wχ̃-1
0 (i) + w1(i) ≤ w∗,

and paint all vertices in X with color i.

(5.) Return coloring χ̃0

First, we need to show that we really can perform the above steps as described. In par-
ticular, each set U selected in step (2.) must have weight at least ‖w‖∞ so that a subset
X of U with w(X) ≥ ‖w‖∞ can be found. Also, Buffer needs to be non-empty whenever
there exists a color class with wχ̃-1

0 (i) + w1(i) < w∗ − 2‖w‖∞ in step (3.). We also would
have to show that there exists a color i ∈ [k] with wχ̃-1

0 (i) + w1(i) ≤ w∗ in step (4.). But
this fact is obvious since w∗ is the average of wχ̃-1

0 (j) + w1(j) over all j ∈ [k].
The invariants (I) and (II) below establish the soundness of steps (2.) and (3.) in

procedure BinPack1.

Claim 1. The following are invariants of the algorithm above.

(I) Every color class U = χ̃-1
0 (i) with w(U) + w1(i) > w∗ has weight ≥ w∗

(II) In step (3.) we have wχ̃-1
0 (i) + w1(i) ≤ w∗ for all colors i ∈ [k].

Proof: The precondition w1(i) ≤ w∗ − ‖w‖∞ yields w(U) ≥ ‖w‖∞ for all vertex sets
U ⊆ W0 with w(U) + w1(i) ≤ w∗. So invariant (I) holds. Clearly, invariant (II) is valid
directly after the completion of step (2). An iteration in step (3) maintains the invariant
since w(X) ≤ 2‖w‖∞ and therefore w(U ∪ X) + w1(i) ≤ w∗ for all U ⊆ W0 and i ∈ [k]
with w(U) + w1(i) < w∗ − 2‖w‖∞. So invariant (II) holds, too. �

From the following two claims, which are implied by the precondition wχ-1
0 (i)+w1(i) =

w∗+O(‖w‖∞) and thew(X) ≥ ‖w‖∞ for all considered partsX, we infer that the maximum
splitting cost and the maximum boundary cost of χ̃0 are as required by the lemma, i.e.,

‖πχ̃-1
0 ‖∞ = O(‖πχ-1

0 ‖∞ and ‖∂χ̃-1
0 ‖∞ = O(‖∂χ-1

0 ‖∞ + ‖πχ-1
0 ‖

1/p
∞ ).

Claim 2. The class of each color i ∈ [k] is changed at most a constant number of times in
steps (2)-(3) of procedure BinPack1.

Claim 3. For each considered part X, we have π(X) ≤ ‖πχ-1
0 ‖∞ and ∂(X) ≤ ‖∂χ-1

0 ‖∞ +

O(‖πχ-1
0 ‖

1/p
∞ ).

The claims above also imply that the procedure BinPack1 can be implemented to run
in time at most proportional to t(|G[W0]|). The total time for computing splitting sets
is O(t(|G[W0]|)) by Claim 2. Using an appropriate data structure, e.g., a stack, it takes
constant time to select a color that satisfies a certain condition (like wχ̃-1

0 (i)+w1(i) > w∗).
Now its easy to see that the direct sum χ̃0⊕ χ̂1 is almost strictly balanced. By invariant

(II), we have wχ̃-1
0 (i) + wχ̂-1

1 (i) ≤ w∗ for all colors i ∈ [k]. When step (3) is completed,
the minimum of wχ̃-1

0 (i) + wχ̂-1
1 (i) is at least w∗ − 2‖w‖∞. Since w(X) ≤ 2‖w‖∞ for

34



all considered parts X, the maximum of wχ̃-1
0 (i) + wχ̂-1

1 (i) cannot become larger than
w∗ + 2‖w‖∞.

Proof of Proposition 12. We need the following simple claim.

Claim 4. For any vertex set W ⊆ V with weight at least ‖w‖∞/2, there exists X ⊆ W
with ∂WX ≤ π1/p(W ) + ∆c and ‖w‖∞/2 ≤ w(X) ≤ ‖w‖∞.

Proof: If there exists a vertex x ∈ W with weight at least ‖w‖∞/2, then we can choose
X := {x}. Otherwise, we have ‖w|W‖∞ ≤ ‖w‖∞/2 and so we can compute a splitting

set X ⊆ W with ∂WX ≤ π1/p(W ) and ‖w|W ‖∞ ≤ w(X) ≤ 2‖w|W ‖∞. Then part X has
weight between ‖w‖∞/2 and ‖w‖∞. �

The procedure below shall compute a strictly balanced coloring χ̂ from an almost

strictly balanced coloring χ such that ‖∂χ̂-1‖∞ = O(‖∂χ-1‖∞ + ‖πχ-1‖1/p
∞ + ∆c). Let

w∗ := ‖w‖1/k be the average weight of a k-coloring in V . We assume w∗ ≥ ‖w‖∞/2. The
somehow degenerate case w∗ < ‖w‖∞/2 can be handled similarly.

Procedure BinPack2 (almost strictly balanced coloring χ : V → [k])

// Precondition: w∗ ≥ ‖w‖∞/2
(1.) Start with χ̂← χ, and Buffer ← ∅.
(2.) As long as there exists a color class U = χ̂-1(i) with w(U) > w∗,

compute a splitting set X ⊆ U as in Claim 1

uncolor all vertices in X,

and update Buffer ← Buffer ∪ {X}.
(3.) As long as there is a color class U = χ̂-1(i) with w(U) < w∗ − (1− 1/k)‖w‖∞

choose a part X ∈ Buffer ,

paint all vertices in X with color i,

and update Buffer ← Buffer \ {X}
(4.) For all remaining X ∈ Buffer ,

choose a color i ∈ [k] with wχ̂-1(i) ≤ w∗ − w(X)/k,

and paint all vertices in X with color i.

(5.) Return strictly balanced coloring χ̂

Similar to Lemma 15, in step (3) the invariant wχ̂-1(j) ≤ w∗ + ‖w‖∞/k holds for all colors
j ∈ [k]. Hence if there exists a color i ∈ [k] in step (3) with wχ̂-1(i) < w∗− (1−1/k)‖w‖∞ ,
then the total weight of currently colored vertices is less than (k−1)(w∗ +‖w‖∗∞/k)+w∗−
(1− 1/k)‖w‖∞ = ‖w‖1. So there are vertices uncolored and Buffer must be non-empty.

In step (4) we can choose a color i ∈ [k] with color class of weight at most w∗−w(X)/k
since the vertices in X are uncolored and so w∗−w(X)/k is at least the average weight of
the current coloring χ̂.

Since χ is almost strictly balanced and each considered part X has weight at least
‖w‖∞/2, the class of a color changes at most constant number of times. So for each

considered part X, we have ∂X ≤ ‖∂χ-1‖∞+O(‖πχ-1‖1/p
∞ +∆c) by Claim 1. And therefore

the returned coloring χ̂ satisfies ‖∂χ̂-1‖∞ ≤ ‖∂χ-1‖∞ +O(‖πχ-1‖1/p
∞ + ∆c).

The procedure BinPack2 can be implemented to run in time O(t(|G|) + k log k). The
colors in step (4) can be selected using a heap data structure, since we can choose in every
iteration the color with class of minimum weight. This operation takes time O(log k), since
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O(k) parts are generated in step (2). The argument for the running time of the remaining
steps is analogous to the proof of Lemma 15.

A.3 Balanced Separators and Tight Examples

In this section we elaborate on how splitting sets are related to the more common no-
tion of balanced separators. Specifically, we show that both notions are equivalent for
bounded-degree graphs. Based on these results we show lower bounds for the min-max
boundary decomposition cost that are essentially proportional to the upper bounds given
by Theorem 4.

Definition 34 (Balanced Separation). A separation of a graph G = (V,E) is a pair
(A,B) of vertex sets with A ∪B = V such that no edge of G joins A \B and B \A.

A separation is balanced with respect to weights w : V → R+ if the weight of both A\B
and B\A is at most two third of the total weight, i.e., max{w(A\B), w(B\A)} ≤ 2/3·‖w‖1.
The cost of a separation (A,B) with respect to a cost function τ : V → R+ is given by
τ(A ∩ B). A vertex set S ⊆ V is called balanced separator if S = A ∩ B for a balanced
separation (A,B).

Similar to the splittability σp of a graph we can define its “separability”.

Definition 35 (Separability, Separator Theorem). The p-separability of G with ver-
tex costs τ is the minimum cost of a balanced separation in a subgraph of G relative to
the p-norm of the subgraph’s vertex costs, where the subgraph and its weights are worst
possible, i.e.,

βp(G, τ) := max
W⊆V

sup
w : W→R+

min
(A,B)

τ(A ∩B)/‖τ|W ‖p

where the minimum is over all w-balanced separations (A,B) of G[W ].
A family G of pairs (G, τ) has a p-separator theorem if there exists a constant CG such

that the p-separability of G with vertex costs τ is at most CG for all pairs (G, τ) in G, i.e.,
if βp|G = OG(1).

The remark below gives an overview of known and recent results about the separability
and splittability of various graph classes.

Remark 36 (cf. [8]). For unit vertex costs,

– planar graphs [5] have β2 = O(1),

– graphs with genus g [3] have β2 = O(
√
g),

– graphs excluding a clique of size h as minor [1] have β2 = O(h3/2),

– well-shaped meshes in a d-dimensional space [9] have βd/(d−1) = Od(1),

– d-dimensional k-nearest neighbor graphs [6] have βd/(d−1) = Od(k
1/d).

For arbitrary costs,

– planar graphs [2] have β2 = O(1),
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– d-dimensional grid graphs have σd/(d−1) = O(d · log1/d φ), where φ is the fluctuation
of the edge costs, i.e., the ratio of the maximum cost to the minimum (positive) cost
(cf. Section 6).

The following lemma relates the notions of splittability and separability. Since we
defined splittability in terms of edge costs and separability in terms of vertex costs, we
need to translate between edge costs and vertex costs. Let G = (V,E) be a graph with
edge costs c : E → R+. A natural choice of vertex costs τ : V → R+ corresponding to c
is given by τ(v) := c(δ(v)) for each vertex v ∈ V . Then for every separation (A,B), the
boundary cost c(δ(U)) of any vertex set U with A\B ⊆ U ⊆ A is no more than τ(A ∩B).
On the other hand, we want to be able to construct from vertex sets U ′ ⊆ V separations
(A′, B′) with U ′ ⊆ A′ and cost τ(A′, B′) proportional to c(δ(U ′)). For this, we require that
the local fluctuation φℓ(c) := maxu∈e∈E τ(u)/c(e) is bounded. When we choose B′ := V \U
and A′ to be the set of vertices reachable from U ′ by at most one edge, then the separation
(A′, B′) has cost at most τ(A′ ∩ B′) ≤ 2φℓ(c) · c(δ(U ′)), since every vertex A′ ∩ B′ is an
endpoint of an edge in δ(U ′).

Notice that for the case of unit edge costs, the local fluctuation φℓ(1) equals the max-
imum degree ∆ of G.

In the following, we shall see that σp(G, c) is proportional to βp(G, τ) when both the
maximum degree ∆ and the local fluctuation φℓ are bounded. The lemma’s proof is a
slight generalization of the proof in [5] for the fact that cheap balanced separations imply
inexpensive separations (A,B) with both w(A \B) and w(B \A) at most ‖w‖1/2.

Lemma 37. Let G = (V,E) be a graph with edge costs c : E → R+. Then

βp(G, τ)/φℓ(c)
1.)
≪p σp(G, c)

2.)
≪p φℓ ·∆1/q · βp(G, τ)

where τ are vertex costs with τ(v) := c(δ(v)), f ≪p g is short for f = Op(g), and 1
p + 1

q = 1.

Proof. 1.) βp = O(φℓ ·σp): Let W be a subset of V with weights w : W → R+. We need to
show that there exists a w-balanced separation (A,B) of cost τ(A∩B) = O(φℓ ·σp ·‖τ|W‖p).

If w(v) > ‖w‖1/3 for some vertex v ∈ W then ({v},W ) is a w-balanced separation of
cost τ(v) ≤ ‖τ|W‖p.

So we can assume ‖w‖∞ ≤ ‖w‖1/3. Then let U ⊆ W be a splitting set with ∂WU ≤
σp · ‖c|W ‖p and 1/3 · ‖w‖1 ≤ w(U) ≤ 1/3 · ‖w‖1 + ‖w‖∞. Our assumption ensures w(U) ≤
2/3 · ‖w‖1. Let X ⊆W contain the endpoints of the edges in the cut C := δG[W ](U). Now
(A,B) := (U ∪X,W \ U) is a balanced separation of G[W ]. The cost of (A,B) satisfies

τ(A ∩B) ≤ τ(X) ≤
∑

{u,v}∈C
τ(u) + τ(v) =

∑

e∈C
2φℓ · ce

= O(φℓ · c(C)) = O(φℓ · σp · ‖c|W ‖p)

And the p-norm of c|W is at most proportional to the p-norm of τ|W , since

2 ·
∑

e∈E[W ]

cpe =
∑

v∈W

∑

e∈δ(v)

cpe ≤
∑

v∈W

(τ(v))p

So (A,B) is a balanced separation with cost at most proportional to φℓ · σp · ‖τ|W ‖p.
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2.) σp = Op(φℓ · ∆1/q · βp): Let W be a subset of V with weights w : W → R+ and
splitting value w∗. We need to show that there exists w∗-splitting set U ⊆ W of cost
∂WU = Op(φℓ ·∆1/q · βp · ‖c|W ‖p).

Similar to the p-splitting cost measure (cf. Definition 10), we define a weight function
π : V → R+ with π(v) := (βp · c(δ(v))p = (βp · τ(v))p. Then it holds π(W ′) = βp‖τ|W ′‖p for

arbitrary vertex set W ′ ⊆ V . Thus, there exists balanced separators of cost π1/p(W ′) :=
(π(W ′))1/p in G[W ′], and so we can call π1/p(W ′) the separating cost of G[W ′].

The following procedure computes a separation (A0, B0) of G[W ] such that w(A0\B0) ≤
w∗ − ‖w‖∞/2 ≤ w(A0). The idea is to divide the vertices of G[W ] using a π-balanced
separation (A,B) and then to proceed recursively on one of the graphs G[A \ B] and
G[B \ A].

Procedure Split (vertex set W ⊆ V , w∗ ∈ R+)

// Precondition: 0 ≤ w∗ ≤ ‖w|W‖1
(1.) Trivial case: if π(W ) = 0, then return separation (W,W )

(2.) Let (A,B) be π-balanced separation of G[W ] with cost
τ(A ∩B) ≤ βp‖τ|W‖p = π1/p(W )

(3.) If w∗ − ‖w‖∞/2 < w(A \B)

then let (A′, B′) = Split(A \B,w∗) be separation of G[A \B]

and return (A0, B0) := (A′ ∪ (A ∩B), B′ ∪B),

(4.) else if w(A \B) ≤ w∗ − ‖w‖∞/2 ≤ w(A)

then return (A0, B0) := (A,B),

(5.) else if w(A) < w∗ − ‖w‖∞/2
then let (A′, B′) = Split(B \ A,w∗ −w(A)) be separation of G[B \ A]

and return (A0, B0) := (A ∪A′, B′ ∪ (A ∩B)).

Since both π(A \B) and π(B \A) are at most 2
3 · π(W ), it follows by induction on the size

of the considered graph that τ(A0∩B0) = τ(A∩B)+ τ(A′∩B′) ≤ π1/p(W ) ·∑∞
i=0(

2
3 )i/p =

Op(π
1/p(W )).

Without loss of generality we may assume that G[W ] is connected. (If G[W ] was not
connected, we would need to apply Split only to one of the connected components of
G[W ].) Hence it holds τ(v) = c(δ(v)) ≤ φℓ · c(δ(v) ∩ E(W )) = c(δG[W ](v)). Then we have
by Hölder’s inequality

τ(v) = φℓ ·
∑

e∈δG[W ](v)

ce ≤ φℓ · |δG[W ](v)|1/q · (
∑

e∈δG[W ](v)

cpe)
1/p ≤ φℓ ·∆1/q · (

∑

e∈δG[W ](v)

cpe)
1/p.

So it holds π(W ) ≤ φℓ ·∆1/q ·∑v∈W

∑

e∈δG[W ](v) c
p
e and also π1/p(W ) = O(φℓ ·∆1/q · βp ·

‖c|W ‖p). Thus we get τ(A0 ∩B0) = Op(φℓ ·∆1/q · βp · ‖c|W ‖p).
Given a separation (A0, B0) computed by Split(W , w∗), we find a w∗-splitting set U

of G[W ] as follows. Let {v1, . . . , vh} = A0∩B0 be an enumeration of the separator A0∩B0,
and let i ∈ [h+1] be the largest index with w(A\B)+w(v1)+. . .+w(vi−1) ≤ w∗−‖w‖∞/2.
Then U := A0 \B0 ∪ {v1, . . . , vi−1} is w∗-splitting.

Since A0 \B0 ⊆ U ⊆ A0, the boundary cost of U cannot exceed τ(A0∩B0) and it holds
∂U = Op(π

1/q(W )) = Op(φℓ ·∆1/q · βp · ‖c|W ‖p) as required.
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We remark that the running time of procedure Split might be quite long. The reason
is that the size of one of the graphs G[A \ B] and G[B \ A] could be almost as large as
|G[W ]|. However this issue can be resolved, by using for every second recursive call of the
procedure (alternately), separations that are degW -balanced instead of π-balanced, where
degW : V → R+ assigns the degree in G[W ] to a vertex. Then both graphs G[A \ B] and
G[B \ A] have size at most 2

3 |G[W ]|. With this modification, Split(W , w∗) runs in time
O(t(|G[W ]|)), provided that one can find balanced separations of graphs G[W ′] in time
t(|G[W ′]|) and t : N→ N is a linear function.

Notice that the second part of the proof of Lemma 37 implies the following stronger
statement. Let b be the maximum of min(A,B) τ(A ∩ B)/‖τ|W‖p over all sets W ⊆ V ,
where the minimum is over all π-balanced separations of G[W ]. Then for arbitrary weights
w, procedure Split can find w-balanced separations of G with cost at most Op(b · ‖τ‖p).
Hence, we can draw the corollary below from the second part of the proof of Lemma 37
(cf. Split). This corollary observes that cheap balanced separators with respect to one
“universal” measure imply cheap balanced separators with respect to arbitrary measures.

Corollary 38. Let G = (V,E) be a graph with vertex costs τ , and weights π be as in the
proof of Lemma 37. Then,

βp(G, τ)≪p max
W⊆V

min
(A,B)

τ(A ∩B))/‖τ|W ‖p

where the minimum is over all π-balanced separations of G[W ].

Similar to the situation above, the first part of the proof of Lemma 37 implies the
following stronger statement. Let s := maxW⊆V ∂

2
∞(G[W ], c|W )/‖c|W ‖p ≥ σp. If we used

strictly balanced 2-colorings instead of splitting sets, we could show βp = O(φℓ·s). Together
with the second part, we obtain an upper bound on σp in terms of the min-max boundary
decomposition cost ∂k

2 for two colors:

Corollary 39. For graphs G = (V,E) with edge costs c : E → R+, it holds

σp(G, c)≪p ∆1/q · φ2
ℓ(c) · max

W⊆V
∂2
∞(G[W ], c|W )/‖c|W ‖p ≤ ∆1/q · φ2

ℓ (c) · σp(G, c).

In the remainder of this section we construct families of instances for which we can
compute lower bounds on the min-max boundary decomposition cost. With these instances,
we can argue that there is no way to improve the upper bound of Theorem 5, i.e., the bound
is optimal with respect to the chosen parameters.

The idea is as follows. Let G = (V,E) be a graph with edge costs c of bounded local
fluctuation and weights w such that each balanced separation has cost Ω(b · ‖τ‖p). Then
consider the graph G̃ = G(1)∪̇ . . . ∪̇G(⌊k/4⌋) consisting of ⌊k/4⌋ disjoint isomorphic copies
G(i) of G. For a vertex v ∈ V , we write v(i) for the copy of v in G(i). Similarly, e(i) denotes
the edge in G(i) that corresponds to an edge e ∈ E. We extend the costs and weights
of G to the graph G̃ in the obvious way: c̃(e(i)) := c(e) and w̃(v(i)) := w(v). Now the
claim is that every k-coloring χ of G̃ with ‖w̃χ-1‖∞ ≤ 2‖w̃‖avg has average boundary cost
Ω(b · k−1/p · ‖c̃‖p).

Lemma 40. Let k ≥ 4 be an integer and G = (V,E) be a graph with edge costs c : E → R+

and vertex weights w : V → R+. Suppose all w-balanced separations of G have cost at least
b · ‖τ‖p with respect to the vertex costs τ that correspond to c, i.e., τ(v) := c(δ(v)).
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Then for the graph G̃ = (Ṽ , Ẽ) that consists of ⌊k/4⌋ pairwise disjoint isomorphic
copies of G, every k-coloring χ with roughly balanced weights, i.e., ‖w̃χ-1‖∞ ≤ 2‖w̃‖avg ,
has average boundary cost

‖∂χ-1‖avg = Ω(b · k−1/p · ‖c̃‖p/φℓ(c)),

where c̃ : Ẽ → R+ and w̃ : Ṽ → R+ are the extensions of c and w to G̃, respectively.

Proof. We consider one of the isomorphic copies of G, say G(i) = (V (i), E(i)). Let Uj :=
χ-1(j) ∩ V (i) be the set of vertices of G(i) with color j in coloring χ.

The coloring χ has maximum weight at most 2‖w̃‖avg , and the weight of G(i) is at
least 4‖w̃‖avg. Hence for each Uj , it holds w(Uj) ≤ w(V (i))/2. Then we can (greedily)
find a partition {R,B} of the color set [k] such that

∑

j∈R w(Uj) ≤ 2/3 · w(V (i)) and
∑

j∈B w(Uj) ≤ 2/3 · w(V (i)).

Let U∗ ⊆ V (i) denote the set
⋃

j∈R Uj and X ⊆ V (i) \ U∗ be the set vertices reachable

from U∗ by exactly one edge (of δ(U∗)). So (A,B) := (U∗ ∪X,V (i) \ U∗) is a w-balanced
separation of G(i). By our precondition, we know τ(A ∩ B) = τ(X) ≥ b · ‖τ‖p. As in the
first part of the proof of Lemma 37, we have ∂U∗ = Ω(τ(A ∩B)/φℓ) and ‖τ‖p = Ω(‖c‖p).

Therefore, the total boundary cost of the coloring χ|V (i) satisfies ‖∂χ-1
|V (i)‖1 ≥ ∂(U∗) =

Ω(b · ‖c‖p/φℓ). Since i was arbitrary, the total boundary cost of χ

‖∂χ-1‖1 =

⌊k/4⌋
∑

i=1

‖∂χ-1
|V (i)‖1 ≥ ⌊k/4⌋ · Ω(b · ‖c‖p/φℓ)

and hence the average boundary cost of χ is at least proportional to b · ‖c‖p/φℓ.
Since ‖c̃‖pp = (

∑

i

∑

e∈E c
p
e) = ⌊k4⌋‖c‖

p
p, it holds ‖c‖p = Ω(‖c̃‖p/k1/p) and thus we have

‖∂χ-1‖avg = Ω(b · k−1/p · ‖c̃‖p/φℓ) as required.

We get the following corollary from Lemma 40. Any graph for which we know a lower
bound on the minimum cost balanced separation allows us to construct a “similar” graph
with a lower bound on ∂k

∞ that matches the upper bound from Theorem 5. We assume
that the instance is well-behaved, i.e., the graph has bounded maximum degree ∆ and the
edge costs have bounded local fluctuation φℓ.

Corollary 41. Let G = (V,E) be a well-behaved graph with edge costs c : E → R+ and
a p-separator theorem (with respect to vertex costs τ(v) := c(δ(v)) that correspond to the
edge costs). Suppose there are weights w : V → R+ such that ‖w‖∞ ≤ ‖w‖1/4 and all
w-balanced separations of G have cost Ω(‖τ‖p).

Then for every positive multiple of 4, say k, there exists a well-behaved graph G̃ with
edge costs c̃ and a p-separator theorem such that

∂k
∞(G̃, c̃) = Θp(‖c̃‖p/k1/p + ‖c̃‖∞). (20)

Also there are weights w̃ of G̃ such that every roughly w̃-balanced coloring has average
boundary cost Ω(‖c̃‖p/k1/p + ‖c̃‖∞).

Proof. Let G̃ and c̃ be as in Lemma 40. Observe that ‖c̃‖∞ ≤ ‖c‖p = O(‖c̃‖p/k1/p).
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The condition ‖w‖∞ ≤ ‖w‖1/4 ensures ‖w̃‖avg = ⌊k/4⌋‖w‖1

k = ‖w‖1/4 ≥ ‖w‖∞ and

therefore every strictly w̃-balanced coloring of G̃ has maximum weight at most ‖w̃‖avg +
‖w̃‖∞ ≤ 2‖w̃‖avg .

So it follows from Lemma 40 that the average boundary cost (and also the maximum
boundary cost) of every roughly or strictly balanced coloring is Ω(‖c̃‖p/k1/p + ‖c̃‖∞).

The instance (G̃, c̃) is well-behaved and has a p-separator theorem, because it is a
disjoint union of well-behaved instances with p-separator theorem. In fact, it is an easy
consequence of procedure Split (cf. Lemma 37) that (G̃, c̃) has a p-separator theorem.

Then it follows from Lemma 37 and the well-behavior of G that the p-splittability of G̃
is at most a constant. Since G has bounded maximum degree, it holds ∆c(G̃) = O(‖c̃‖∞).
So by Theorem 4 we have

∂k
∞(G̃, c̃) = Op(‖c̃‖p/k1/p + ‖c̃‖∞).

We remark that it is a common assumption in previous work [4] to require from the
considered graphs a p-separator theorem and bounded degree, i.e., that βp and ∆ are
constants. We need the additional assumption that φℓ is bounded, since we consider
arbitrary costs instead of only unit-costs. Recall that φℓ = ∆ for unit costs.

The arguments in the proofs of Lemma 40 and Corollary 41 yield Theorem 5.

41


	Introduction
	Min-Max Boundary Decomposition Problem
	Multi-balanced colorings
	Improving balancedness at no cost
	Shrinking procedure
	Splittability of grid graphs
	Conclusion
	Further proofs
	Shrinking cuts
	Two bin-packing procedures
	Balanced Separators and Tight Examples


