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Abstract. We regard the problem of communication in the presence of faulty
transmissions. In contrast to the classical works in this area, we assume some
structure on the times when the faults occur. More realisticseems the “burst error
model”, in which all faults occur in some small time interval.
Like previous work, our problem can best be modelled as a two-player perfect
information game, in which one player (“Paul”) has to guess anumberx from
{1, . . . , n} using Yes/No-questions, which the second player (“Carole”) has to
answer truthfully apart from few lies. In our setting, all lies have to be in a con-
secutive set ofk rounds.
We show that (for bign) Paul needs roughlylog n + log log n + k rounds to
determine the number, which is onlyk more than the case of just one single lie.

1 Introduction and Results

Communication in the presence of transmission faults is a well-studied subject.
Pelc’s [Pel02] great survey lists more than a hundred references on such problems.

1.1 Communication Model with Errors

The customary model is that there are two entities, “Sender”and “Receiver”. Sender
wants to send a message to Receiver. The message is represented by a numberx from
[n] := {1, . . . , n}. If we have an error-free channel, it is clear that Sender needs to send
log(n) := log2(n) bits (and Receiver only needs to listen).

In the model with errors, however, some of the bits sent by Sender are flipped. Of
course, we need some restriction on the occurrence of errors, as otherwise no reliable
communication is possible. Typically, we assume that such errors only occur a certain
number of times, at a certain rate or according to a certain probability distribution.

To compete with the errors, we often assume a two-way communication, that is, Re-
ceiver may send out information to Sender. However, we typically think of the situation
as not symmetric: Bits sent from Receiver to Sender are neverflipped (no errors occur).
This model is justified in many practical situations where one communication partner
has much less energy available and thus his sendings are morevulnerable to errors.



1.2 Liar Games

We often adopt a worst-case view. Hence we do not assume the errors to be random, but
rather to be decided on by a malevolent adversary. In fact, wemay think of that sender
not really wanting to share his secretx, but rather trying to keep it by intentionally
causing errors (lying). This leads to a so-calledliar game. In the following, we adopt
the language usually used in the analysis of such games. In particular, Sender/Lier will
be called “Carole”, an anagram of oracle, and Receiver, who is questioning Carole to
reveal the secret, will be called “Paul” in honor of Paul Erd˝os, the great questioner.

The rules of the game are as follows: Carole decides on a number (secret)x ∈ [n].
There areq rounds. Each round, Paul asks a Yes/No-question, which Carole answers.
In doing so, Carole may lie according to further specifications. Paul wins the game, if
afterq such rounds, he knows the number.

To make this a perfect information game (in-line with our worst-case view), let us
assume that Carole does not have to decide on the numberx beforehand, but rather
tries to answer in a way that is consistent with some secret. For technical reasons, we
shall also allow that she lies in a way that is inconsistent with any secret, which will be
viewed as a win for Paul as well.

We remark that, depending on the parametersn, q, and on the lying restrictions
either Paul or Carole has a winning strategy. So we say that Paul wins if he has a
winning strategy.

Note that this set-up perfectly models the communication problem with errors.
There is one more remark regarding Paul’s questions. It seems that his communication
effort is much higher, since each question can only be represented by an bit string.

This could be justfied by the stronger battery Paul has compared to Carole, but there
is a more natural explanation: If Paul and Carole agree on a communication protocol
beforehand, then Paul does not need to transmit his questions. It suffices that he merely
repeats the bit he just received and Carole can deduce the next question from this and
the agreed-on protocol.

In the following, we rather use the language of games than that of communication
protocols. With the above equivalence at hand, this is merely a question of taste and we
follow the authors of previous work in this respect.

1.3 Previous Results

As said, liar games are an intensively studied subject. We now briefly state the main
results relevant for our work and refer to the survey paper Pelc [Pel02] for a more
complete coverage.

The first to notice the connection between erroneous communication and such
games was Alfréd Rényi [Rén61,Rén76]. However, for a long time most of this commu-
nity was not aware of Rényi’s work and cited Ulam [Ula76] as inventor of liar games.

Pelc [Pel87] was the first to completely analyse the game withone lie. He showed
that Paul wins for evenn if n ≤ 2q/(q + 1), and for oddn if n ≤ (2q − q + 1)/(q + 1).
There are numerous results fork = 2, 3, or 4 lies, which we will not discuss here.

Spencer [Spe92] solved the general problem for any fixed number k of lies. Here
Paul wins ifn ≤ 2q/

(

q
≤k

)

(1 + o(1)), where
(

q
≤k

)

=
∑k

i=0

(

q
i

)

.
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All results above concern the fully adaptive (‘real game’) setting with unrestricted
questions and fixed numbers of lies. The problem has a quite different nature if only
comparison questions (“Isx ≤ s?” for somes ∈ [n]) are allowed [BK93], a constant
fraction of lies is allowed in any initial segment of rounds [Pel89], or Paul’s questions
have to come in two batches, where Carole gives her answers only after having received
the whole batch [CM99].

1.4 Our Contribution

Translating the above results back into the model of erroneous communication, the
errors occur independently at arbitrary times. While this might be true for some types
of errors, we feel that it is much more likely that the errors occur in bunchs. We think,
e.g., of atmospheric disorders. Here, not only a single bit will be affected, but a whole
sequence of bits sent.

In the game theoretic setting, we allow Carole to lie up tok times, but only in a way
that all lies occur ink consecutive rounds. Note that, in thesek rounds, Carole may lie,
but of course she does not have to.

The additional interval restriction makes Carole’s position much harder. Roughly
speaking, Paul only needsk more questions than in the one-lie game. This shows that,
in scenarios where it can be assumed, using our interval assumption is a valuable im-
provement. More precisely, we show the following.

Theorem 1. Letn, q ∈ N andk ∈ N≥2.

(i) Paul wins ifq ≥ ⌈log n⌉ + k + ⌈log log 2n⌉ andq ≥ ⌈log n⌉ + 2k.
(ii) Carole wins ifq < log n + 2k.
(iii) Carole wins if q < log n + k + log log 2n − 1.

We assumedk ≥ 2 as otherwise the game in consideration would revert to the
searching game with just one lie.

Note that Theorem 1 gives almost matching lower and upper bounds on the number
of questions Paul needs to reliably distinguishn integers. Specifically, for all choices of
n andk, the upper and lower bound differ by at most3.

2 Notation and Preliminaries

We describe a game position by a non-negative vectorP = (xk, . . . , x0), wherexi

is the number of integers for which (assuming it to be the correct answer) Carole is
allowed to lie within the nexti questions. Note that for the analysis, it does not matter
which are the particular integers that Carole may lie fori times, it is only their number
that matters.

In particular,xk is the number of integers for which Carole has never lied, andx0 is
the number of integers for which Carole must not lie anymore.Note that

∑k

i=0 xi ≤ n,
and this is strict if there are integers for which Carole would have lied at two times
separated by at leastk rounds. For the initial position, denotedP 0, we havexk = n and
x0 = . . . = xk−1 = 0.
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We continue formalizing the questions Paul is asking. Note first that a Yes/No-
questions can always be expressed in the form “x ∈ S?” for someS ⊆ [n]. Since again
for the analysis the particular integers are not so relevant, we describe the question via
an integer vectorv = (vk, . . . , v0), wherevi is the number of integers that (i) are in
S and (ii) Carole may liei times for. Consequently, we have0 ≤ vi ≤ xi for all
i ∈ {0, . . . , k}. To ease the language, we identify questions with their corresponding
vectors.

Depending on Carole’s answer there are two possibilities for the next game position
P ′, namelyP ′ = YES(P, v) andP ′ = NO(P, v), where

YES(P, v) = (vk, xk − vk, xk−1, xk−2, . . . , x1 + v0)

NO(P, v) = YES(P, P − v) = (xk − vk, vk, xk−1, xk−2, . . . , x1 + x0 − v0)

Note that neitherYES(P, v) norNO(P, v) depends on anyvi with 0 < i < k. For the
integers corresponding to these entries, Carole’s answer does not affect the state of the
game.

For a positionP = (xk, . . . , x0), a question (i.e. an integer vectorv with 0 ≤ v ≤
P ) is aperfect bisectionif v0 = 1

2x0 andvk = 1
2vk.

Recall thatYES(P, v) andNO(P, v) do not depend onv1, . . . , vk−1, so if Paul can
make a perfect bisection, then the successor state does not depend on Carole’s answer.

We call a question aquasi-perfect bisectionif vi ∈ {⌊xi/2⌋, ⌈xi/2⌉} for i = 0 and
i = k.

We conclude this section by explaining when some position isbetter than another:

Lemma 2. LetP = (xk, . . . , x0) andP ′ = (x′
k, . . . , x′

0) be positions (= non-negative
inegral vectors). Assume thatP andP ′ have the following property:

k
∑

i=j

xi ≤
k
∑

i=j

x′
i for all j = 0, . . . , k. (1)

Then for anyq, we have the implication

Paul can winP ′ in q rounds =⇒ Paul can winP in q rounds

In this case, we call positionP at least as goodasP ′, and we callP ′ at most as good
asP .

Proof. Though the statement is rather technical, the idea is simple: We can generateP ′

out ofP by (i) allowing Carole some additional lies and(ii) adding some more numbers
to the search space. Clearly, both operations will make the game harder for Paul, so if
he has a winning strategy forP ′ in q rounds, then exactly the same strategy will also
win P .

So we want to prove that we can indeed transformP into P ′ by operations(i) and
(ii) . We use an inductive argument. Firstly, we add some numbers of typex0 to P until
we get equality forj = 0, i.e.,

∑k

i=0 xi =
∑k

i=0 x′
i.

Now we havex0 =
∑k

i=0 xi−
∑k

i=1 xi ≥
∑k

i=0 x′
i−
∑k

i=1 x′
i = x′

0, sox0−x′
0 ≥

0. We choosex0 − x′
0 numbers inP at thex0-position. For these numbers, we allow

4



Carole to lie in the next step. So we get a new positionP 1 = (xk, . . . , x2, x1 + x0 −
x′

0, x
′
0), and we know thatP is at least as good asP 1.

Now inductively we produce a sequenceP 0 := P, P 1, P 2, . . . , P k with the follow-
ing properties:

– P i−1 is at least as good asP i (in the sense of equation (1)).
– P i is generated fromP i−1 by operations of type(i) and(ii) .
– For0 ≤ j < i we havexi

j = x′
j , wherexi

j is thej-entry ofP i.

–
∑k

j=0 xi
j =

∑k

j=0 x′
j for i > 0.

Indeed, we have already constructedP 1. Out ofP i−1, by the same construction we get
P i, namely by allowing one additional lie for some numbers fromxi−1

i . (Formally by
settingP i := (xi−1

k , . . . , xi−1
i+1, x

i−1
i + xi−1

i−1 − x′
i−1, x

′
i−1, x

i−1
i−2, . . . , x

i−1
0 )). Note that

P i−1 andP i are identical except for the componentsi−1 andi. It is easy to check that
P i has the desired properties.

Finally, we end up withP k, which is automatically identical toP ′.
Altogether, we have constructedP ′ out of P by the feasible operations(i) and(ii) .

This proves the claim.

3 Upper Bounds and Strategies for Paul

In this section, we give a strategy for Paul. In this way, we derive upper bounds on
the number of questions Paul needs in order to reveal the secret x ∈ [n]. We show
(Corollary 6) that forn being a power of2, Paul can win if

q ≥ max
{

k + log n + ⌈log log n⌉, 2k + log n
}

.

Our strategy is constructive, that is, immediately yields an efficiently executable proto-
col for the underlying communication problem.

Here is an outline of the strategy. Assume thatn is a power of two. Clearly, some
strategy working for a largern will also work for a smaller one, hence this assumption
is fine (apart from possible a minor loss in the resulting bounds). If all xi are even, Paul
can ask the questionv = 1

2P . He does so for the firstlog n rounds of the game (Main
Game), resulting in a position withxk = 1. Now the aim is to get rid of this one integer
Carole has not lied for yet. To do so, we ask a “trigger question”, roughly(1, 0, . . . , 0).
Either we succeeded with our plan and simply repeat asking for half of thex0-integers
(Endgame I), or we end up with very few possible integers altogether (Endgame II),
allowing an easy analysis.

Lemma 3 (Main Game).If n is a power of2, then with the firstm = log n questions
Paul can reach position

Pm = (1, 1, 2, . . . , 2k−2, (m − k + 1)2k−1).

Proof. In the firstm rounds, Paul can always ask questions of the formv = P/2, where
P is the current game position. The position afterk such perfect bisections is

P k = (2m−k, 2m−k, 2m−k+1, . . . , 2m−1).
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A simple inductive argument shows that the position afterk + ν questions withν ≤
m − k is

P k+ν = (2m−k−ν , 2m−k−ν , 2m−k−ν+1, . . . , 2m−ν−2, (ν + 1) · 2m−ν−1).

Forν = m − k, we get the statement of the lemma.

After the first m questions, Paul asks a “trigger question”vm+1 =
(1, 0, . . . , 0, 2k−2). If k is sufficiently small compared ton, Carole will not give up
the relatively many possibilities encoded inx0 and therefore answer “No”. The follow-
ing two lemmas deal with both possible successor positions,namelyYES(Pm, vm+1)
andNO(Pm, vm+1).

Lemma 4 (Endgame I).From position

NO(Pm, vm+1) = (0, 20, 20, . . . , 2k−3, (m − k + 1)2k−1)

Paul wins the game (by reaching position(0, . . . , 0, 1)), with at mostk − 1 + ⌈log m⌉
questions.

Proof. With k−2 perfect bisections, Paul reaches the position withxk = . . . = x2 = 0,
x1 = 1 andx0 = 2(m − k + 1) +

∑k−2
i=1 2i−1/2i−1 = 2m − k.

In the next question, Paul asks form − ⌈k/2⌉ integers corresponding to the last
entry of the position. So the next position is no more than

(0, . . . , 0, m − ⌊k/2⌋+ 1) ≤ (0, . . . , 0, m).

From this position on, the game reverts to classical “TwentyQuestions” problem
for a universe of sizem. So Paul can win with⌈log m⌉ additional questions.

The total number of questions is at most

k − 2 + 1 + ⌈log m⌉ ≤ k − 1 + ⌈log m⌉.

Lemma 5 (Endgame II).Paul can win with at most2k − 1 questions from position

YES(Pm, vm+1) = (1, 0, 20, 21, . . . , 2k−3, 2k−2)

Proof. With k − 2 quasi-perfect bisections, Paul reaches a position at leastas good as

(1, 0, . . . , 0,

k−2
∑

i=0

2i/2i) = (1, 0 . . . , 0, k − 1).

Now Paul asks for the number corresponding to the first entry of the position, that
is, the questionv = (1, 0, . . . , 0). If the answer is “Yes”, Paul wins instantly. Otherwise,
the position is(0, 1, 0, . . . , k − 1). Playing the “Twenty Questions” game on thek − 1
integers corresponding to the last entry, we reach witht ≤ ⌈log k⌉ additional questions
a position withx0 = xk−1−t = 1 and all other entries naught. From this position, Paul
can win ink − t questions.

The total number of questions is at most

k − 2 + 1 + k = 2k − 1.
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Corollary 6. For log n ∈ N, Paul can win if

q ≥ max
{

k + log n + ⌈log log n⌉, 2k + log n
}

.

Proof. By Lemma 3, we needlog n questions for the main game. Then Paul asks one
“trigger question”. Depending on Carole’s answer, Paul either plays Endgame I or
Endgame II. In the first case, he needsk + ⌈log log n⌉ − 1 further questions to win
the game (Lemma 4). In the latter case, Paul wins with2k − 1 questions (Lemma 5).

If n is not a power of two, we can replace the starting positionP = (n, 0, . . . , 0)
by (2⌈log(n)⌉), 0, . . . , 0), which is at most as good asP . By the Corollary, Paul can still
win if

q ≥ max
{

k + ⌈log n⌉ + ⌈log log n⌉, 2k + ⌈logn⌉
}

,

which is the statement in Theorem 1 (i).

4 Lower Bound

In this section, we prove lower bounds showing that our strategies given in the previous
section are optimal up to a small constant number of questions. We start by defining the
following formal weight function:

wj(xk, . . . , x0) = (j − k + 2)2k−1xk +

k−1
∑

i=0

2ixi.

The weight function is supposed to determine whether it is possible for Paul to find
out the correct number inj rounds. It does not quite so, but it solves only a formal
relaxation of the problem. (That’s why it is calledformal weight function.)

Note that the weight function is linear in its variables.
The following lemma summarises the important properties ofsuch a formal weight

function.

Lemma 7. (i) Triangle equality: For all j ≥ k + 1 and for all integral vectorsP and
v,

wj(P ) = wj−1(YES(P, v)) + wj−1(NO(P, v)).

(Note: We do not require that the entries ofP andv are positive.)
(ii) Formal descent: For all j ≥ k + 1 and for all integralP , there is a formal choice

v for Paul, such that

wj−1(YES(P, v)) = wj−1(NO(P, v)), if wj(P ) is even.

wj−1(YES(P, v)) = wj−1(NO(P, v)) + 1, if wj(P ) is odd.

By a formal choice, we mean an integral vector with possibly negative entries.
(iii) Starting condition: For j = k, if P is a state with non-negative integral entires, we

havewk(P ) ≤ 2k if and only if Paul can win the situationP in k rounds.

7



Proof. Let P = (xk, . . . , x0), v = (vk, . . . v0). Direct calculation proves the assertion:

wj−1(YES(P, v)) + wj−1(NO(P, v))

=

(

(j − k + 1)2k−1vk + 2k−1(xk − vk) +

k−2
∑

i=1

2ixi+1 + (v0 + x1)

)

+

(

(j − k + 1)2k−1(xk − vk) + 2k−1vk +

k−2
∑

i=1

2ixi+1 + (x0 − v0 + x1)

)

= (j − k + 1)2k−1xk + 2k−1xk +

k−2
∑

i=1

2i+1xi+1 + 2x1 + x0

= (j − k + 1)2k−1xk +

k−1
∑

i=2

2ixi + 2x1 + x0

= (j − k + 1)2k−1xk +

k−1
∑

i=0

2ixi

= wj(P )

This proves the triangle equality.
Obviously, if P = (0, . . . , 0, 2, 0, . . . , 0), then Paul can choosev =

(0, . . . , 0, 1, 0, . . . , 0), and thus obtainwj−1(YES(P, v)) = wj−1(NO(P, v)). (Be-
cause by symmetryYES(P, v) = NO(P, v).)

But wj is linear in all entries, so it suffices to prove the claim forP =
(0, . . . , 0, 1, 0, . . . , 0), with the i-th entry= 1. Let P ′ = (0, . . . , 0, 1, 0, . . . , 0), but
with thei − 1-th entry= 1. Now puta := wj(P ) − 2wj−1(P

′). We must distinguish
two cases:

– wj(P ) is even: Then alsoa is even. Putv := P +(0, . . . , 0, a
2 ). ThenYES(P, v) =

P ′+(0, . . . , 0, a
2 ), sowj−1(YES(P, v)) = wj−1(P

′)+ a
2 = 1

2wj(P ). On the other
hand, by the triangle equality,wj−1(NO(P, v)) = wj(P ) − wj−1(YES(P, v)) =
1
2wj(P ) = wj−1(YES(P, v)).

– wj(P ) is odd: Then alsoa is odd. Putv := P +(0, . . . , 0, a+1
2 ). ThenYES(P, v) =

P ′ + (0, . . . , 0, a+1
2 ), so wj−1(YES(P, v)) = wj−1(P

′) + a+1
2 = 1

2 (wj(P ) +
1). On the other hand, by the triangle equality,wj−1(NO(P, v)) = wj(P ) −
wj−1(YES(P, v)) = 1

2 (wj(P ) − 1) = wj−1(YES(P, v)) − 1.

For the starting condition, note that due toj = k, the weight function simplifies to
wk(xk, . . . , x0) =

∑k

i=0 2ixi.
Case 1:xk ≥ 1
In this case, there is a chipC1 on thexk-position.

First assume that the weight is≥ 2k. Then there is some other chipC2. Now Carol
can take the following strategy: In the remainingk rounds, she always says thatC2 is
the correct chip. Then after thek moves,C2 is still in the game. But so isC1, because it
takes at leastk moves to travel down all the way to thex0-position and one more to be
kicked out. Hence, there are two chips left and Paul cannot decide which one is correct.
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Now assume that the weight is≤ 2k. ThenC1 is the only chip, and Paul has already
won.
Case 2:xk = 0
First assume that the weight is≤ 2k. Then Paul chooses the questionv :=
(0, . . . , 0,

⌊

1
2x0

⌋

). (⌊ ⌋ means rounding down to the next integer.) The two possible
consecutive states differ only at thex0-position, and it is better for Carole to take
NO(P, v) = (0, xk, . . . , x2, x1 +

⌈

1
2x0

⌉

), having weight

w(NO(P, v)) =

⌈

1

2
x0

⌉

+ x1 +

k−1
∑

i=1

2ixi+1

=

⌈

1

2
x0

⌉

+

k
∑

i=1

2i−1xi

=

⌈

w(P )

2

⌉

≤

⌈

2k

2

⌉

= 2k−1.

So Paul can assure that in the following state, the weight is≤ 2k−1. By induction, after
k rounds the weight is≤ 1, implying that only one chip is left. Hence, Paul wins the
game.

Now assume that the weight is> 2k. Paul asks a question, and Carol choses the
answer that leaves more chips on thex0-position. The other positions are indifferent
against Carols choice, and the consecutive state isPnew = (0, xk, . . . , x2, x1 + x̃0),
with somex̃0 ≥ 1

2x0.
Then the weight of the new position is at least

w(Pnew) ≥ x̃0 + x1 +

k−1
∑

i=1

2ixi+1

≥
1

2
x0 +

k
∑

i=1

2i−1xi

=
w(P )

2
>

2k

2
= 2k−1.

So Carol can assure that in the following state, the weight is> 2k−1. By induction,
afterk rounds the weight is> 1. But during those rounds, all chips must move all the
way down to thex0-position. So all chips have weight1, implying that there is more
than one chip left. Hence, Carol wins the game.

Corollary 8. If P is a state in the liars game, and ifj ≥ k with wj(P ) > 2j, then Paul
can not win the game withinj moves.

Hence,max{j ≥ k| wj(P ) ≤ 2j} is a lower bound for the minimal number of
questions that Paul needs.

Proof. Assume Paul had a strategy that would yield him victory inj moves. Then Carol
does the following: In each round, she picks the answer with the higher weight function.
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By the triangle equality, the new weight will be at least halfthe old weight. Hence, we
have the invariant thatwi(Pi) > 2i, wherePi is the state when there arei questions
left.

In particular, fori = k, we havewk(Pk) > 2k, and by our assumption, Paul can still
win within k moves. This is a contradiction to the starting condition of our theorem.

We now show an almost tight lower bound for the case thatn ≤ 22k

. To do so, we
need the following lemma.

Lemma 9. For n = 2, Paul needs at least2k + 1 questions to win the game.

Proof. For the firstk questions Carole claims thatx = 1, and for the nextk ques-
tions she claimsx = 2. Now Paul needs one additional questions to finally determine
Carole’s choice.

The above lower bound forn = 2 extends in the following way to arbitraryn.

Lemma 10. Paul needs at leastlog n + 2k questions to win the game.

Proof. From the start position(n, 0, . . . , 0), Paul needs at leastlog n − 1 questions to
reach a positionP = (xk, . . . , x0) with xk = 2, if Carole always chooses an answer
that yields the largest entry in the first component of the successor position. Lemma 9
implies that Paul needs at least2k + 1 questions to win the game from positionP .

Thus the total number of questions needed for Paul to win the game is at least
log n + 2k.

Theorem 1 (ii) is now a corollary of the lemma above.

Proof (Theorem 1 (ii)).If n < 2q−2k then Paul may ask less thanlog n + 2k questions
and henceforth cannot win the game by Lemma 10.
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