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Abstract

Our main result is an efficient construction of a hitting set generator against the class of
polynomials of degree di in the i-th variable. The seed length of this generator is logD +
O (̃log1/2D). Here, logD =

∑
i log(di + 1) is a lower bound bound on the seed length of any

hitting set generator against this class. Our construction is the first to achieve asymptotically
optimal seed length for every choice of the parameters di. In fact, we present a nearly linear
time construction with this asymptotic guarantee. Furthermore, our results extend to classes of
polynomials parameterized by upper bounds on the number of nonzero terms in each variable.

Underlying all of our constructions is a general and novel framework that exploits the product
structure common to the classes of polynomials we consider. This framework allows us to obtain
efficient and asymptotically optimal hitting set generators from primitives that need not be
optimal or efficient by themselves.

Finally, our results imply blackbox polynomial identity tests that use fewer random bits than
previous methods.
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1 Introduction

Let F be a class of polynomials in n variables over some field K. A hitting set against F is a set
of points H ⊆ Kn such that no polynomial in F vanishes on all points in H. Hitting sets against
polynomials are fundamental objects in both computer science and mathematics. The existence of
hitting sets follows for instance from Hilbert’s Nullstellensatz. The Nullstellensatz shows that the
polynomials vanishing on the algebraic set of some polynomial ideal I are precisely the radicals of I.
Hence, the set H of common zeros of I is a hitting set against the non-radicals of I (assuming that
K is algebraically closed). A fundamental property of every class of polynomials is the minimum
size of a hitting set against it. We are interested in classes of polynomials that are parameterized by
upper bounds on the degree or the number of nonzero terms. To be more precise, consider the class
F of nonzero polynomials of degree at most di in the i-th variable. If we fix arbitrary sets Si ⊆ K
of size di + 1, then the set H = S1× · · ·×Sn is a hitting set against F of size D =

∏
i(di + 1). This

fact [AT92, Alo99] was used among other applications in proving the Combinatorial Nullstellensatz.
The size of H can be shown to be optimal, that is, no set of size less than D can be a hitting set
against F .

From a computational point of view, this hitting set has two shortcomings. First, it guarantees
only to contain a single non-root of each polynomial in F . But for robustness, it would be more
desirable if the non-roots of any polynomial in F had high density in H. Second, the size of
the hitting set is exponential in the description length of F . The parameters d1, . . . , dn have
description length about N = logD whereas the smallest hitting set against F has size 2N . Hence,
we cannot afford to enumerate all points of H. Instead, we would like to have an efficient implicit
representation of the hitting set of length polynomial in N . This leads us to the following definition
and problem statement.

Construction of Hitting Set Generators. A hitting set generator of density α > 0 against a
class of polynomials F is a function G : {0, 1}r → Kn such that for all f ∈ F we have Pr[f(G(z)) 6=
0] ≥ α where the seed z ∈ {0, 1}r is drawn uniformly at random. The parameter r is called the
seed length of the generator G. We think of G as an implicit representation of a hitting set of size
at most 2r. Further, suppose T is a family parameters such that for every parameter t ∈ T we
have defined a class of polynomials F (t). Given parameters t ∈ T and ε > 0, the problem is to
construct a hitting set generator G of density 1− ε against F (t) such that the seed length of G is
minimized. The construction algorithm should be deterministic and run in time poly(|t|), where |t|
is the length of the binary encoding of t. The required output of the algorithm is the description
of a boolean circuit implementing G. The output of the circuit is understood as a natural binary
encoding of a tuple of field elements.

Polynomial Identity Testing. Closely related is the question of polynomial identity testing.
Here, we assume we are given access to a polynomial in some implicit representation. The problem
is to distinguish the case where the given polynomial is identically zero from the case where the
polynomial is member of some class F ⊆ K[x1, . . . , xn]. Provided with a hitting set generator
of high density against F , this can be done by picking a random seed and testing if the given
polynomial is zero at the point produced by the generator. While the zero polynomial will always
be zero on this point, any polynomial in F will evaluate to a nonzero value with high probability.
This does not require more than “blackbox access” to the polynomial.

The study of polynomial identity testing was initiated by the work of DeMillo, Lipton, Schwartz
and Zippel [DL78, Zip79, Sch80]. The observation is, if the size of the sets Si in our above example
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is 2ndi instead of di + 1, then the hitting set generator G which chooses a random point from the
set H = S1× · · · × Sn has density 1/2 against the same class of polynomials. The seed length of G
is roughly logD + n log n.

Since many problems reduce to checking polynomial identities, this early work entailed a variety
of efficient randomized algorithms [CRS95, Lov79, MVV87, BCW80, BK95, AB03]. Similarly,
several results in complexity theory [Sha92, LFKN92, AS98, ALM+98] involve hitting set generators
against polynomials as a subroutine.

What remained wide open after this initial work is the question how much randomness is re-
quired in testing polynomial identities. There were two successful approaches towards making
progress on this question. One is giving deterministic identity tests for restricted classes of polyno-
mials and arithmetic circuits [Agr05, DS07, KS06, Shp07]. Testing general arithmetic circuits for
identity in even subexponential deterministic time is linked to circuit lower bounds [KI04, Agr05].
The other approach has been to minimize the seed length of hitting set generators against more
general classes of polynomials [CK00, LV98, KS01, Bog05].

In this work we continue the study of the latter question. For many classes of polynomials
parameterized by degree or sparsity we are able to settle the question by giving constructions of
hitting set generators whose seed lengths match the following lower bound asymptotically.

Lower Bound. Consider a class of polynomials F ⊆ K[x1, . . . , xn] for which there is a linear
space W ⊆ F ∪ {0} of dimension at least d. As we fix any set of strictly less than d points in
Kn, the space V of polynomials vanishing on these points has co-dimension strictly less than d.
Hence, the intersection space V ∩W has positive dimension. In particular, it contains a nonzero
polynomial. We conclude that any hitting set generator of density 1− ε against F needs a support
of size at least d/ε. In other words, the seed length is at least r ≥ log(d/ε).

1.1 Our Result

We introduce a general framework for obtaining efficient and asymptotically optimal constructions
from primitives that need not be optimal or even efficient by themselves. Our framework requires
the target class of polynomials to exhibit a typical product structure that we formalize. We exploit
this structure by working with product operations on hitting set generators. A crucial primitive
in our framework are hitting set generators which besides their seed have an additional source of
randomness, called random advice. Random advice captures excess in randomness that can be
shared when computing the product of two generators. Our constructions will generally be the
product of several generators each working on one subset of the variables. A simple approximation
algorithm determines a partition of the variables so as to minimize seed length, runtime or the
required field size of our construction. In fact, all of our results are variations of the following two
steps. We design from scratch some novel generators with optimal seed length but random advice.
Next, our framework allows us to turn these generators into asymptotically optimal hitting set
generators without any advice.

We say a polynomial f has degree d = (d1, . . . , dn), if di is an upper bound on the degree of the
i-th variable in f . We let F (d) ⊆ K[x1, . . . , xn] denote the class of nonzero degree-d polynomials
in n variables. We use the abbreviation D =

∏n
i=1(di + 1) throughout our work.

Theorem 1 Given any degree d = (d1, . . . , dn), we can efficiently construct a hitting set generator
of density 1/2 against F (d) with seed length logD +O (̃

√
logD).
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Since the quantity D is the dimension of the space F (d) ∪ {0}, the lower bound implies that the
seed length is asymptotically optimal for the entire family of parameters d1, . . . , dn where n, di ∈ N.
The multiplicative excess in seed length decreases inverse-polynomially in logD. We will prove
the statement generalized to arbitrary density. Our result holds over large enough finite fields
and over any field of characteristic zero. These assumptions are roughly the same as those of the
Schwartz-Zippel Lemma. It is worth noting, over fields of characteristic zero, our construction does
not depend on the size of the coefficients of the polynomials. The dependence on each degree di is
only logarithmic which makes our construction efficient even for high degrees.

In addition, we show how to obtain a nearly linear time construction at the cost of slightly more
but still asymptotically optimal seed length. More generally we get the precise trade-off between
runtime O(log1+δD) and seed length logD +O (̃log1−δD) where δ ∈ (0, 1/2).

Furthermore, we extend our work to classes of polynomials where we are given an upper bound
on the number of nonzero terms. Our notion of sparsity is analogous to the previous notion of
degree. We say a polynomial f has sparsity m = (m1, . . . ,mn), if f has at most mi nonzero terms
when written as a univariate polynomial in the i-th variable. For any tuple m = (m1, . . . ,mn) and
any integer d ∈ N, we define F (m, d) as the class of nonzero sparsity-m polynomials of total degree
at most d. Henceforth, let M =

∏n
i=1mi.

Theorem 2 For any sparsity m = (m1, . . . ,mn) and any degree d where d ≤M , we can efficiently
construct a hitting set generator with seed length logM+O (̃

√
logM · log d) and density 1/2 against

F (m, d) over any large enough finite field.

The lower bound shows any hitting set generator of positive density against F (m, d) has seed length
at least logM , provided that d is sufficiently large, i.e., d ≥

∑n
i=1mi. Hence, the seed length of

our generator is asymptotically optimal whenever log d = o(logM/(log logM)c) for some absolute
constant c.

Theorem 3 Given δ > 0, m, and d, we can construct in time poly(log1/δM,n log d) a generator
G such that G has density 1/2 against F (m, d) over any field of characteristic zero and the seed
length of G is (1 + δ) logM +O(log logM + log log d) .

In the above theorem, for log log d = o(logM), the seed length can be made arbitrarily close in a
multiplicative sense to the lower bound logM at the expense of a higher running time. This trade-
off is comparable to the time-approximation trade-off in polynomial time approximation schemes
(PTAS). The theorem is weaker than our other results in that it gives only quasi-polynomial time
constructions of generators with asymptotically optimal seed length. However, in contrast to all
previously known constructions against F (m, d), the dependence of the seed length on the total
degree is not logarithmic but doubly-logarithmic. We obtain this exponential improvement by
combining Descartes’ Rule of Signs with an improved version of a reduction in [KS01].

Previous Work. The Schwartz-Zippel Lemma gives a generator against F (d) of seed length
logD + n log n which is asymptotically optimal for large degree, i.e., logD = ω(n log n). Only
recently, Bogdanov [Bog05] obtained improvements in the case where the total degree d of the
polynomials is much smaller than the number of variables n, e.g., d = O(log n). Several results are
concerned with the case where logD is comparable to n. Chen and Kao [CK00] achieve the seed
length

∑n
i=1dlog(di + 1)e. Their construction works only for polynomials with integer coefficients

and has some dependence on the size of those coefficients. Strictly speaking, this is why our
lower bound argument does not apply to their setting. Lewin and Vadhan [LV98] generalize the
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techniques of Chen and Kao to fields of positive characteristic. While these upper bounds are as
good as logD for some configurations of the parameters, they come arbitrarily close to logD + n
in general. As we think of logD = Θ(n), this is not asymptotically optimal. In fact, speaking
in terms of the size of hitting sets, this is a multiplicative excess of order 2n. Furthermore, both
construction algorithms have a polynomial runtime dependence on each degree di. As soon as a
single degree di is superpolynomial in n, their algorithms are not efficient. Notice, this range of
di is natural even if logD = O(n). Small arithmetic circuits can compute polynomials of very
high degree in a single variable. In the arithmetic circuit model, Agrawal and Biswas [AB03] give
a polynomial identity test that uses logD random bits. However, in this case we have no lower
bound. In particular, if P = coRP, then there is a deterministic polynomial time arithmetic circuit
identity test [Sch80, IM83]. However, a particular tool introduced by [AB03] turns out to give us
hitting set generators of the optimal seed length log(D) over finite fields of size at least D. This
tool will be used and discussed later. We will see how to achieve asymptotically the same seed
length over significantly smaller finite fields.

Klivans and Spielman [KS01] improve the Schwartz-Zippel Lemma when given information
about the sparsity of the polynomials. Specifically, they construct a hitting set generator against
the class of n-variate polynomials of total degree d and at most m nonzero terms. The seed length
is O(log(mnd)). This is better than previous work if logm = o(n log d). In order to compare these
results with the work of Klivans and Spielman, we can think of the quantity M =

∏
mi as some

approximation of the number of nonzero terms m. Notice that always M ≥ m and in general M
can be strictly larger than m. The polynomial 1+x1 · · ·xn has only two nonzero terms, but mi = 2
for all i ∈ [n] and thus M = 2n. In general, our parameterization allows only M ≥ 2n, since all
variables with mi = 1 can be fixed to an arbitrary nonzero constant.

In Figure 1 we compare our results to the previous work in terms of the normalized size of
the hitting set that we can efficiently represent and the time it takes to compute the implicit
representation itself. Unless otherwise specified, the density α is fixed to be a constant, say, 1/2.
In the table, we neglect polylogarithmic factors in the runtime. The parameter δ may be chosen
arbitrarily from the range (0, 1/2).

Size/D Runtime Source
char = 0 char > 0

1 α = 1/D
nn α = 1/2

logD [Sch80, Zip79, DL78, AT92]

2n poly(nd) poly(qd) [CK00, LV98]
1 poly(D) poly(q logD) Kronecker substitution [AB03]

D1/ logδ D log1+δD poly(q logD) This work
Size/M
d ·M c poly(logM · log d) poly(q logM) [KS01]

log d ·M δ poly(log1/δM · log d) — This work

d ·M
log1/2 d

log1/2M — poly(q · logM) This work

Figure 1: Comparison of hitting set size and construction time

Notation We will fix some notation for the rest of this paper. If k and m > 0 are integers,
then bkcm denotes the remainder of k modulo m. For a tuple k = (k1, . . . , kn), we let bkcm =
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(bk1cm, . . . , bkncm). The set of integers {1, . . . , n} is abbreviated by [n]. The notation O (̃t) is used
to suppress polylogarithmic factors of t, that is, O (̃t) = O(t · (log t)O(1)).

2 Direct Products, Shared Advice, and Balanced Factors

In this section we give the technical exposition of our framework. It consists of three parts, product
operations on hitting set generators and classes of polynomials, the notion of random advice, and
an algorithmic approach working with these tools.

Definition 1 (Direct product) For two generators G1 : {0, 1}r1 → Kn1 and G2 : {0, 1}r2 → Kn2 ,
we define the direct product G1 ⊗ G2 : {0, 1}r1+r2 → Kn1+n2 to be the function defined by G1 ⊗
G2 (z1z2) = (G1(z1), G2(z2)).

Clearly, if both G1 and G2 can be constructed efficiently, then so can the product G1 ⊗G2.
Now, suppose we have two hitting set generators with high density against two classes F1 and

F2, respectively. We want to identify a large class of polynomials F1F2 against which the direct
product still has high density.

Definition 2 (Schwartz-Zippel product) Let F1 ⊆ K[x1] and F2 ⊆ K[x2] be two classes of
polynomials on disjoint sets of variables x1 and x2, respectively. Let ni = |xi|. We define the
Schwartz-Zippel product F1F2 to be the set of polynomials f ∈ K[x1,x2] such that f as a polynomial
in x2 has a coefficient g ∈ K[x1] satisfying the following two properties:

• g is a member of F1, and

• for every a1 ∈ Kn1 with g(a1) 6= 0 ∈ K, the polynomial f(a1,x2) ∈ K[x2] is a member of F2.

Intuitively, this is the same product structure required in the well-known proof the Schwartz-Zippel
Lemma. As desired we get the following lemma.

Lemma 1 Let G1 and G2 be two generators, and let F1 ⊆ K[x1] and F2 ⊆ K[x2] be two classes of
polynomials. Suppose that G1 has density α1 against F1 and G2 has density α2 against F2. Then,
the direct product G1 ⊗G2 has density α1α2 against the Schwartz-Zippel product F1F2.

Proof. Immediate from the definition of the Schwartz-Zippel product. �

We introduce hitting set generators with an additional source of randomness, called random advice.

Definition 3 (Advised generator) We call a function G : {0, 1}a × {0, 1}r → Kn an advised
generator with seed length r(G) := r and advice length a(G) := a. We say an advised generator
G has quality 1 − ε against a class F of polynomials, if the generator G(y, ·) has density 1 − ε/2
against F with probability 1− ε/2 for a randomly chosen string y ∈ {0, 1}a. Formally,

Pry∈{0,1}a
(
∀f ∈ F. Prz∈{0,1}r [f(G(y, z)) 6= 0] ≥ 1− ε

2

)
≥ 1− ε

2 .

We define the advice-less generator Ḡ : {0, 1}a+r → Kn corresponding to G to be the function
defined by Ḡ(yz) = G(y, z). Here yz denotes the string obtained from y and z by concatenation.

Fact 2 If G has quality α against F , then Ḡ has density α against F .
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Definition 4 (Shared advice product) For two advised generators G1 : {0, 1}a1 × {0, 1}r1 →
Kn1 and G2 : {0, 1}a2 × {0, 1}r2 → Kn2 with a = max{a1, a2}, we define the shared-advice prod-
uct G1 ⊗ G2 : {0, 1}a × {0, 1}r1+r2 → Kn1+n2 to be the function defined by G1 ⊗ G2 (y, z1z2) =
(G1(y, z1), G2(y, z2)). Here we assume that Gi ignores all but the first ai advice bits.

We can compute the shared-advice product at a moderate loss of quality.

Lemma 3 Let {Gi}i∈[k] be a set of advised generators, and let {Fi}i∈[k] be a set of classes of
polynomials. Suppose the generator Gi has quality 1−ε against Fi. Then, the shared-advice product
G =

⊗
iGi has quality 1− kε against the Schwartz-Zippel product

∏
i∈[k] Fi.

Proof. With probability 1− kε/2, each generator Gi(y, ·) has density 1− ε/2 against Fi. Condition
on this event. By Lemma 1, the direct product G(y, ·) =

⊗
iGi(y, ·) has density (1−ε/2)k > 1−kε/2

against
∏
i Fi. �

Balanced Factors. The previous discussion gives rise to the following construction approach.
Recall, our goal is a hitting set generator against some class of polynomials F ⊆ K[x1, . . . , xn]. In
a first step we identify classes F1, . . . , Fk such that F is contained in the Schwartz-Zippel product∏
i∈[k] Fi. We think of these classes Fi as factors of F . This step induces a partition of the variables

into k parts. We will design advised generators Gi against each Fi, respectively. Each Gi works on
one subset of the variables. Then we combine them into one generator G using the shared advice
product. Our final candidate is the seedless generator Ḡ. Since the quality of G suffers when the
number of factors k is large, it is desirable to have a partition of the variables that consists of not
too many parts. But once we determined k, what is a good partition of the variables for this choice
of k? We want to have a partition that is balanced in the following sense. Suppose we can associate
a weight with each variable such that the total weight of a subset of the variables corresponds to
the length of advice needed by a generator Gi operating on this set of variables. Since we can share
advice, the goal is to find a partition of the variables that distributes the weight equally among all
parts. For technical reasons, we can allow that parts containing only a single variable have large
weight.

Lemma 4 Given a positive integer k and a polynomial ring K[x] with nonnegative weights w : [n]→
R≥0 on the variables, we can efficiently compute a partition (S1, . . . , Sk) of the set S = [n] of
variables such that each part Si either contains only a single variable or else the total weight of the
variables in Si is at most w(Si) ≤ 4w(S)/k.

Proof. There are at most bk/2c variables with w(i) > 2w(S)/k. Each of these variables is put in
a singleton set. The remaining variables are distributed among the at least dk/2e remaining sets
using a greedy algorithm that aims to minimize the maximum weight of a set. �

Ultimately, we can always choose k so as to minimize seed length of our construction. But varying
over k also gives rise to interesting trade-offs.

To illustrate the initial step of our approach, consider the class F (d) of polynomials in some
n variables. Let (S1, . . . , Sk) be a partition of the set of coordinates [n] and further let di denote
the restriction of d to the coordinates in Si. By inspection of the definition, we see that the
Schwartz-Zippel product

∏
i F (di) is a superset of F (d).
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3 Polynomials of a Given Degree

We begin with the basic building blocks in our construction. For univariate polynomials we will
need a simple generator that picks a random field element from a large enough range. We define
the trivial generator with seed length r to be the generator G : {0, 1}r → K that outputs a field
element that corresponds in fixed way to its seed. For example, if char(K) = 0 or char(K) ≥ 2r,
G would output the field element corresponding to the binary number encoded by its seed, that is,
G(z0 · · · zr−1) =

∑r−1
i=0 zi(1 + 1)i ∈ K.

Proposition 5 The trivial generator G with seed length log(d/ε) +O(1) has density 1− ε against
the class of univariate polynomials over a field K of degree at most d, provided that K has size at
least d/ε.

We further use the Kronecker substitution as introduced by [AB03] for our choice of parameters.

Definition 5 Let d = (d1, . . . , dn) ∈ Nn. Let Di =
∏

0<j<i(dj + 1) for all i ∈ {1, . . . , n}. The
Kronecker substitution kr ∈ (K[X])n with respect to d is defined as kr(X) = (XD1 , . . . , XDn).

Lemma 6 Let f ∈ F (d). Then, f(kr(X)) ∈ K[X] is a a univariate polynomial of degree at most
D−1. Furthermore, for any two distinct monomials w and w′ in f , we have w(kr(X)) 6= w′(kr(X)).
In particular, f(kr(X)) is not the zero polynomial in K[X].

Proof. The degree bound is a direct consequence of the fact that
∑n

i=1 diDi = D−1 as easily shown
by induction. Now suppose we have two distinct monomials w =

∏
i x

ui
i and w′ =

∏
i x

vi
i in f . We

argue that under Kronecker substitution these monomials are mapped to distinct exponents of X.
To see this, pick the largest index j for which uj 6= vj . Say uj > vj . We have

∑
i(ui − vi)Di >

Dj −
∑

i<j(ui − vi)Di. But ui − vi < di and further
∑

i<j diDi < Dj . �

Remark 1 Over finite fields of cardinality at least D/ε, this lemma immediately gives us a gener-
ator G of density 1− ε and optimal seed length. We simply combine Lemma 6 with Proposition 5.
More precisely, we generate points of the form kr(s) where the element s is drawn uniformly at
random from a subset of the field of size D/ε.

Unfortunately, over fields of characteristic zero the bit size of kr(s) is at least D. But that is
exponential in the desired runtime of our construction algorithm. We show how to solve this
problem at the cost of random advice.

Proposition 7 Let K be of characteristic zero. For any degree d and any ε > 0 we can construct a
hitting set generator G of quality 1− ε against F (d) in time polynomial in log(D/ε). Furthermore,
r(G) = log(D/ε) +O(1) and a(G) = O(log(D/ε)).

Proof. First, the generator G uses its advice string y in order to obtain a number p = p(y) > 2D/ε
such that Pry[p(y) is prime] > 1− ε/2. This can be done efficiently with an advice string of length
O(log(D/ε)). An efficient algorithm for generating an N -bit prime number with high probability
does not need more than O(N + log(1/ε)) random bits (see Appendix C). Second, G uses its seed
to choose a random field element s from the range R = {1, . . . , d2D/εe}. Finally, G outputs the
point bkr(s)cp ∈ Kn where kr denotes the Kronecker substitution with respect to d.

We claim whenever p(y) is a prime number, then G(y, ·) has density 1 − ε against F (d). This
will conclude our proof. So, suppose p(y) is prime and let f ∈ F (d). It suffices to show that there
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are at most D − 1 points s ∈ R such that f(bkr(s)cp) = 0. To obtain a contradiction, suppose
there were D such points S ⊆ R.

This determines a homogeneous system of D linear equations in D variables representing the
coefficients of f . The associated matrix A of this system has entries Ast =

∏n
i=1bsDictip where s ∈ S

and the ti ∈ {0, . . . , di} are such that t =
∑
tiDi. Notice that this representation of t is unique (cf.

Lemma 6). Now observe, Ast = st mod p. This means in GF(p), the matrix A is simply a D ×D
Vandermonde matrix with respect to the points in S. Since p > D, this Vandermonde matrix is
nonsingular over GF(p). Hence, A is nonsingular over K and therefore the only solution to the
system is zero. But F (d) does not contain the zero polynomial. �

Clearly, the advice length in Proposition 7 could be reduced, if we were able to generate the
prime number in the proof of the proposition with significantly less random bits. This connection
is discussed in Appendix C.

3.1 Proof of the Main Theorem

We prove a more general statement from which we deduce the main theorem.

Theorem 4 Let d = (d1, . . . , dn) and ε > 0. Then, for any k ∈ {1, . . . , n}, we can efficiently con-
struct a hitting set generator of density 1−ε against F (d) and seed length log(D/ε)+O(k log(k/ε))+
O(log(D/ε)/k).

Proof. Define the weight of the variable xi as w(i) = log(di+1). Apply Balanced Factors (Lemma 4)
with the given choice of k so as to obtain a partition of the coordinates [n] into sets S1, . . . , Sk. Let
di denote the restriction of d to the coordinates in Si. For each i ∈ [k] we will construct an advised
generator Gi against F (di) of quality 1− ε/2k. If |Si| = 1, then we obtain Gi from Proposition 5.
In this case a(Gi) = 0. Whenever |Si| > 1, we obtain Gi from Proposition 7.

Consider the advised generator G =
⊗

i∈[k]Gi. This is a generator against the Schwartz-
Zippel product

∏
i∈[k] F (di) which is a superset of F (d). The quality requirement follows from

Lemma 3. Notice, r(G) =
∑k

i=1 r(Gi) =
∑k

i=1 log(Di) + O(k log(k/ε)) where Di =
∏
j∈Si(dj + 1).

But,
∑

i log(Di) = logD. Hence, r(G) = logD + O(k log(k/ε)). On the other hand, a(G) =
maxiO(log(Di) + log(1/ε)). But the Balanced Factors Lemma guarantees log(Di) = w(Si) =
O(w(S)/k) = O((logD)/k). Therefore, we obtain the desired generator by combining seed and
advice of G (see Fact 2). �

Corollary 8 (implies Theorem 1) We can efficiently construct a hitting set generator against
F (d) of density 1− ε and seed length log(D/ε) +O (̃

√
logD · log(1/ε)).

Proof. Choose k = d
√

logD/ log(1/ε)e in the previous theorem. �

Nearly Linear Time. The larger we choose k the more efficient is our construction. Notice the
trivial generators from Proposition 5 can be constructed in time linear in their seed length. But to
construct a generator from Proposition 7 we need more time. Let us say time N̄ c for some constant
c > 1 where N̄ is the length of the input parameters. In the context of the above theorem, let
N = logD. For simplicity fix the density to be some constant. The Balanced Factors Lemma
guarantees that the seed and advice length of any advised generator used in our construction is
bounded by O(N/k). Hence, the time it takes to construct all advice generators will be no more

9



than O(k · (N/k)c) = O(N c/kc−1). As we set k = N/(logN)c+1, the over all construction time
becomes O (̃N). The seed length remains within (1 + o(1))OPT. More generally, setting k = N1−δ

for any δ ∈ (0, 1/2) gives us the trade-off between time N1+(c−1)δ and seed length N +O (̃N1−δ).
We point out that the exponent 1 + (c− 1)δ can be improved to 1 + δ in our case. We compute

the prime number required in the proof of Proposition 7 only once centrally and pass it on to
all generators. This requires cubic time in the bit size of the prime number (see Appendix C).
Provided with a prime number, the generators in Proposition 7 can be constructed in quadratic
time, that is, the above c need not be larger than 2.

Smaller Finite Fields. We obtain a similar trade-off for the required size of finite fields. Notice,
in this case we use the generator described in Remark 1 instead of Proposition 7 in the proof
Theorem 4. So, suppose we want to construct a generator of density 1 − ε against F (d). For
k = 1, Theorem 4 requires a field of size q > D/ε. But for k = n, we observe that q > n

ε ·maxi di
is sufficient, which is also the minimum field size required by the Schwartz-Zippel Lemma. For
general k, a field of size at least k

ε ·D
c/k is sufficient for absolute constant c.

4 Polynomials with a Given Number of Nonzero Terms

Let K be a sufficiently large finite field. In this section, we give an efficient construction of hitting
set generators against F (m, d) with asymptotically optimal seed length, provided log d � logM .
In the previous section, our basic building blocks were generators against the target class F (d) that
have optimal seed length, but require some amount of advice. For the target class F (m, d), however,
we do not have advised generators with optimal seed length, even if we allow an arbitrary amount
of advice. Instead we will start from generators that have a close to optimal seed length against
certain subclasses F (w,W ) of F (m, d). Specifically, for a set of monomials W and a monomial
w ∈W , we let F (w,W ) be the set of polynomials over K that are in the linear span of W but not
in the span of W \ {w}. In other words, F (w,W ) consists of all polynomials f ∈ K[x] such that w
has a nonzero coefficient in f and all other monomials of f are in W . Note that all polynomials in
F (w,W ) are nonzero.

Proposition 9 Given m, d, and ε > 0, we can efficiently construct an advised generator G with
r(G) = logM +O(log nd/ε) and a(G) = O(log(dM/ε)) such that G has quality 1− ε against every
class F (w,W ) ⊆ F (m, d).

Intuitively, the proposition asserts that for every choice of w and W , most of the advice strings
y give a generator G(y, ·) that is dense against F (w,W ). On the other hand, possibly no single
advice string yields a generator that is dense against F (m, d). We defer the proof to the end of the
section. Its main ingredient is a randomized reduction from multivariate to univariate polynomials
[KS01] (for a similar reduction see Lemma 13).

Using Proposition 9 as our basic building block, our construction against F (m, d) essentially
works as follows. First, we compute a balanced partition (S1, . . . , Sk) of the coordinates [n] (Lemma 4).
Here we use w(j) = logmj as the weight function. Then, from the above proposition, we obtain
generators Gi that have high quality against any class F (wi,Wi) contained in F (mi, d), where mi

is the restriction of m to the coordinates in Si. Since the partition (Si)i∈[k] was balanced, the
shared-advice product G =

⊗
iGi has only advice length about 1

k logM . On the other hand, the
seed length of G is close to the lower bound logM .

10



We claim that the advice-less generator Ḡ corresponding to G has high density against F (m, d).
By Lemma 3, G has high quality against any product

∏
i F (wi,Wi) with F (wi,Wi) ⊆ F (mi, d).

Hence, Ḡ has high density against the union of all such products. Finally, Ḡ has high density against
F (m, d), because every polynomial in F (m, d) is contained in one of the products

∏
i F (wi,Wi).

The proof of Theorem 3 is deferred to Appendix A.1.

Proof (of Proposition 9). Let t = 4mnd/ε. The generator G uses the advice string y = y1y2 in
order to compute a number p = p(y1) of magnitude between t and 2t such that p is prime with
high probability over a random choice of y1. More precisely, Pry1 [ p is prime ] ≥ 1 − ε/4. Further,
G computes a number k = k(y2) from the range [t] such that k is uniformly distributed in [t] when
y2 is chosen at random. Then, G uses the seed z in order to choose a random number b = b(z)
from some range in K of size d4td/εe. Finally, G outputs the point (bbk

i−1cp)i∈[n]. By construction,
G has advice length a(G) = |y1| + |y2| = O(log(t/ε) + log t) = O(logmnd/ε) and seed length
r(G) = log(4td/ε) = logm+O(log nd/ε).

Let F (w,W ) ⊆ F (m, d). It remains to show that G has quality 1−ε against F (w,W ). Consider
the substitution σ from K[x] to K[X] with σ(xi) = Xbk

i−1cp for i ∈ [k]. Note that σ depends only
on the advice string for G. We say that an advice string is (w,W )-good if σ(w) 6= σ(w′) for
every w′ ∈ W with w 6= w′. By Lemma 2 in [KS01], a random advice string is (w,W )-good with
probability at least 1−mn/t ≥ 1− ε/2. On the other hand, if an advice y is (w,W )-good, then the
generator G(y, ·) has density at least 1− ε/2, because then the substitution σ maps every member
of F (w,W ) to a nonzero polynomial in K[X] of degree at most p · d ≤ 2td and the range of b has
cardinality at least 4td/ε. �

We elaborate on why we need to work with the subclasses F (w,W ) instead of other more natural
candidates in Remark 2 (see Appendix A).

4.1 Over Fields of Characteristic Zero

Let K be a field of characteristic 0. Lipton and Vishnoi [LV03] point out the following fact.

Proposition 10 For every ε > 0, the trivial generator with seed length log(m/ε)+O(1) has density
1− ε against the class of univariate polynomials with at most m nonzero terms.

Proof. A univariate polynomial with at most m nonzero terms has at most m rational roots over
any field of characteristic zero. This follows in particular from Descartes’ Rule of Signs. �

Let F (W ) denote the set of nonzero polynomials in the linear span of W .

Proposition 11 Given ε > 0, m, and d, we can construct an advised generator G with r(G) =
logm/ε+O(1) and a(G) = O(log(mn/ε · log d)) in time 2a(G) = poly(mn/ε · log d) such that G has
quality 1− ε against every class F (W ) ⊆ F (m, d).

Similar to the generator in Proposition 9, the above generator first reduces the multivariate polyno-
mial to a univariate one, and then it applies a generator against the resulting univariate polynomial.
Here this univariate generator is obtained from Proposition 10. In contrast to the trivial generator,
which was used in Proposition 9, this generator has no dependence on the degree of the polyno-
mial. Another difference to Proposition 9 is that the construction time depends exponentially on
the prime number which is used to reduce the degrees in the substitution. For Proposition 11,
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we pick this prime number at random, which allows us to choose it from an exponentially smaller
range with respect to d. The formal proofs of Proposition 11 and Theorem 3 are deferred to Ap-
pendix A.1. The main technical ingredient for the proof of Proposition 11 is an improved version of
a reduction in [KS01]. The proof of Theorem 3 follows our general framework and uses the previous
two propositions as building blocks.
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A Addendum to Section 4

Remark 2 In order to prove Proposition 9, we introduced the class of polynomials F (w,W ) con-
taining all polynomials in the span of W in which w has a nonzero coefficient. Instead of F (w,W ) a
more natural class of polynomials to consider in that proposition is F (W ), the class of all nonzero
polynomials in the span of W . However, the techniques from [KS01] only allow to construct a
hitting set generator against F (W ) with seed length 2 logm+O(log nd/ε). The reason is that the
substitution used for F (W ) has to map every two distinct monomials of W to a pair of distinct
univariate monomials, and so the resulting univariate polynomial has at least quadratic degree in
m, which requires the seed length to be at least 2 logm. It follows that every construction based
on these hitting set generators for F (W ) has seed length at least twice the lower bound logm. In
contrast to this, the substitution for F (w,W ) used above gives a linear degree in m and hence a
seed length of only about logm+O(log nd/ε).

A.1 Proofs Deferred from Section 4.1

We note the following fact.

Fact 12 If an advised generator G has quality α against every class in a set F of classes of
polynomials, then the advice-less generator Ḡ has density α against the union

⋃
F∈F F .

The fact implies that, in order to construct a generator against a class of polynomials F ∗, it is
sufficient to construct an advised generator against a cover F of F ∗, i.e., F satisfies

⋃
F∈F F ⊇ F ∗.

Proof (of Theorem 2). Let k = d
√

logM/ log de and ε = 1/2k. Define the weight of variable xj
as w(j) = logmj . Let S1, . . . , Sk be a partition of the coordinates [n] as in Lemma 4 (Balanced
Factors). For each i ∈ [k], we construct an advised generator Gi of quality 1− ε against every class
F (wi,Wi) ⊆ F (Mi, d), where Mi =

∏
j∈Simj . If |Si| = 1, we can obtain Gi from Proposition 5. In

this case, r(Gi) = O(log d/ε) and a(Gi) = 0. If |Si| > 1, we obtain Gi from Proposition 9. In that
case, the seed length is r(Gi) = logMi + O(log nd/ε) and the advice length is a(Gi) = O(r(Gi)).
Let G =

⊗
i∈[k]Gi be the shared advice product. The seed length of G is

r(G) =
∑

i r(Gi) ≤
∑

i log(Mi) +O(k log nd/ε) = logM +O (̃
√

logM · log d).

Since, by Lemma 4, logMi ≤ 4
k logM for all i ∈ [k] with |Si| > 1, the advice length of G is

a(G) = maxi a(Gi) ≤ O( 1
k logM + log(knd)

)
= O(

√
logM · log d).

By Fact 12, it is sufficient to show that G has quality 1/2 against a cover of F (m, d). Then, we can
conclude that the advice-less generator Ḡ obtained from G has density 1/2 against F (m, d). Also,
r(Ḡ) = r(G)+a(G) = logM+O (̃

√
logM · log d). By Lemma 3, G has quality 1−kε = 1/2 against

every class of the form
∏
i∈[k] F (wi,Wi) with F (wi,Wi) ⊆ F (Mi, d). We claim that these products

cover the class F (m, d). Consider any polynomial f in F (m, d). Let xi denote the restriction of x to
the coordinates in Si. Let w be a monomial with nonzero coefficient in f . Write w =

∏
i∈[k]wi with

w ∈ K[xi]. Let Wi ⊆ K[xi] be the set of monomials with non-zero coefficient in f when written
as polynomial in the variables xi. Note that wi ∈ Wi and F (wi,Wi) ⊆ F (Mi, d). Now we have
f ∈

∏
i∈[k] F (wi,Wi). In this way, we can demonstrate for every f ∈ F (m, d) that it is contained

in one of the products
∏
i∈[k] F (wi,Wi). So these products indeed cover the class F (m, d). By

Fact 12, it follows that Ḡ has density 1/2 against F (m, d). �
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Proof (of Proposition 11). Let t = 4 · 2m2n/ε. The generator G uses the advice string y = y1y2 in
order to compute a number p = p(y1) of magnitude at most t · 10 log2 dt such that p is a random
prime with high probability over a uniform choice of y. More precisely, Pry[p is prime] ≥ 1 − ε/4
and we additionally require that p is uniformly distributed over the primes in this range. Further,
G computes a number k = k(y2) from the range [t] so that for all τ ∈ [t], we have Pry[k = τ ] = 1/t.

Then G uses the seed z in order to choose a random number b = b(z) from the range [d2m/εe].
Finally, G outputs the point (bbk

i−1cp)i∈[n]. Note that G can be constructed in time polynomial in
the magnitude of p, which is exponential in the length of the advice of G.

Let F (W ) ⊆ F (m, d). It remains to show that G has quality 1 − ε against F (W ). Consider
the substitution σ from K[x] to K[X] with σ(xi) = Xbk

i−1cp for i ∈ [k]. Notice, σ depends only
on the advice string for G. We say that an advice string is W -good if σ(w) 6= σ(w′) for every
pair of distinct monomials w,w′ ∈W . An improvement over Lemma 2 in [KS01] which is given in
Lemma 13 shows that a random advice string is W -good with probability at least 1− ε/2.

Now given this event occurs, we argue the generator G(y, ·) has density at least 1 − ε/2. This
is because in this case σ maps every member of F (W ) to a nonzero polynomial in K[X] with at
most m monomials and further the range of b has cardinality at least 2m/ε (cf. Proposition 10).�

Proof (of Theorem 3). Given δ > 0, m = (m1, . . . ,mn), and d ∈ N, we show how to construct a
generator G of density 1/2 against F (m, d). Let k = dδ logM/ log logMe and ε = 1/2k.

Define the weight of variable xi to be w(i) = logmj . Let S1, . . . , Sk be the partition of the
set of variables obtained from Lemma 4. Let Mi = 2w(Si) =

∏
j∈Simj . For every i ∈ [k] with

|xi| = 1, let Gi be a trivial generator with seed length log(2Mi/ε) as in Proposition 10. For every
i ∈ [k] with |xi| > 1, let Gi be a generator as in Proposition 11 of quality 1− ε against every class
F (Wi) ⊆ F (Mi, d).

We claim that G =
⊗

iGi is a generator against a cover of F (m, d) as desired. The seed length
of G is r(G) =

∑
i r(Gi) ≤

∑
i logMi +O(k log 1/ε) = logM +O(δ logM). Since logMi ≤ 4

k logM
for all i ∈ [k] with |xi| > 1, the advice of G is a(G) = maxi a(Gi) ≤ O( 1

k logM + log(n/ε ·
log d)) = O(δ−1 log logM + log(n log d)). Furthermore, we can construct G in time k · 2a(G) =
poly(log1/δM,n log d).

By Lemma 3, G has quality 1 − ε against every class of the form
∏
i F (Wi) with F (Wi) ⊆

F (Mi, d). It follows that the advice-less generator Ḡ obtained from G has density 1/2 against
F (m, d) (Fact 12). �

A.2 An improved reduction from multivariate to univariate

In this section we improve an identity-preserving reduction from multivariate polynomials to uni-
variate polynomials due to Klivans and Spielman [KS01] with regards to randomness. The savings
in randomness are exponential in the total degree d. This is why this improvement might be of
independent interest. We used it in the proof of Proposition 11.

Lemma 13 Let ε > 0 and W ⊆ K[x0, . . . , xn−1] be a set of m monomials, each of total degree at
most d. For positive integers k and p, let t = 2m2n/ε and σ = σk,p be the substitution from K[x]
to K[X] such that σ(xi) = Xbk

icp. If k is picked uniformly at random from [t] and p is picked
uniformly at random from the primes in {1, . . . , t · 10 log2 dt}, then

Prk,p (∀w,w′ ∈W. σ(w) = σ(w′) =⇒ w = w′) ≥ 1− ε.
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Proof. Suppose W = {xa1 , . . . ,xam}, where xai denotes the monomial
∏n−1
j=0 x

aij
j . For all distinct

i, i′ ∈ [m], we have Prk∈[t](
∑

j aijk
j =

∑
j ai′jk

j) ≤ n/t, because the non-zero polynomial
∑

j(aij −
ai′j)kj has at most n roots and there are t choices for k. For every k ∈ [t], the number

∑
j(aij−ai′j)kj

has at most log(2dtn) ≤ n log dt distinct prime factors, because |
∑

j(aij − ai′j)kj | ≤
∑

j(aij +
ai′j)tn ≤ 2dtn. The interval {1, . . . , t ·10 log2 dt} contains at least t log dt prime numbers (for t large
enough). Hence,

Prk,p(σ(xai) = σ(xai′ )) ≤ Prk,p(
∑

j aijk
j =

∑
j ai′jk

j mod p) ≤ n
t + n log dt

t log dt ≤ 2n/t = ε/m2.

By the union bound, the probability that none of the events σ(w) = σ(w′) happen for distinct
w,w′ ∈W is at least 1−

(
m
2

)
· ε/m2 ≥ 1− ε. �

B Optimality of the Lower Bound

The dimension based lower bound we discussed in the introduction is easily seen to be optimal in
the following sense. Suppose that F ∪{0} is indeed a linear subspace of K[x1, . . . , xn]. Let H ⊆ Kn

be a minimal hitting set of positive density against F (if one exists). Then for every point x ∈ H,
there is a polynomial fx in F such that fx(x) 6= 0 but fx(x′) = 0 for all other points x′ ∈ H. It
follows that the space spanned by the set of polynomials {fx}x∈H has dimension |H|. Thus, F ∪{0}
has dimension at least |H|. (And by the lower bound, F ∪ {0} has dimension exactly |H|.)

Also the following is true. If F ∪ {0} is a subspace of dimension h, then h randomly chosen
points from a large enough range [R]n form a hitting set against F with high probability.

C Generating a prime number efficiently

An n-bit prime number can be generated using 2n random bits. The idea is to test n2 pairwise
independent numbers deterministically for primality [AKS04]. The Chebyshev bound gives us a
success probability of 1 − o(1). Using probability amplification on expander graphs, the error
probability can be brought down to any ε > 0 using an additional log(1/ε) random bits and time
polynomial in log(1/ε).

In the context of Section 3.1, we were interested in an algorithm with cubic runtime. There
currently is no deterministic primality test with this runtime, but the randomized Rabin-Miller test
can be used instead. This will result in O(n+ log(1/ε)) random bits.

Remark 3 (on Proposition 7) If we could efficiently generate an N -bit prime number with o(N)
random bits, then the advice length in Proposition 7 could be reduced accordingly to o(logD) bits.
This would directly imply an asymptotically optimal and efficient construction. But, any method to
compute an N -bit prime number in time poly(N) that we are aware of requires Ω(N) random bits.
Computing an N -bit prime number efficiently with o(N) random bits (or no random bits at all) is
an intriguing open problem. Cramer’s conjecture about prime gaps states that the gap between two
consecutive N -bit prime numbers is polynomially bounded in N . Hence, it implies a deterministic
polynomial time algorithm for finding an N -bit prime number. However, mathematical research
seems far from proving such a result. Even if we assume the Generalized Riemann Hypothesis, the
gaps between N -bit primes are only known to be bounded by 2N/2 ·poly(N). And even if this were
a density result, it would only imply an algorithm using N/2 random bits.
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