
Fast SDP Algorithms for Constraint Satisfaction Problems∗

David Steurer†

Abstract
The class of constraint satisfactions problems (CSPs) cap-
tures many fundamental combinatorial optimization prob-
lems such as Max Cut, Max q-Cut, Unique Games,
and Max k-Sat. Recently, Raghavendra (STOC‘08) iden-
tified a simple semidefinite programming relaxation that
gives the best possible approximation for any CSP, assuming
the Unique Games Conjecture. Raghavendra and Steurer
(FOCS‘09) showed that, independent of the truth of the
Unique Games Conjecture, the integrality gap of this re-
laxation cannot be improved even by adding a large class of
valid inequalities.

We present an algorithm that finds an approximately
optimal solution to this relaxation in near-linear time. Com-
bining this algorithm with a rounding scheme of Raghaven-
dra and Steurer (FOCS‘09) leads to an approximation algo-
rithm for any CSP that runs in near-linear time and has an
approximation guarantee that matches the integrality gap,
which is optimal assuming the Unique Games Conjecture.

1 Introduction
In a constraint satisfaction problem (CSP) instance, we
are given a finite alphabet Σ and a set of variables V ,
and the goal is maximize an objective function over all
assignments of alphabet symbols to the variable set V .
The objective function is given as a convex combination
of bounded, local payoff functions φ : ΣS → [−1, 1],
where S ⊆ V is a subset of variables. The maximum
number of variables that one of the local payoff function
depends on is called the arity of the problem instance.

A constraint satisfaction problem Π is specified by
an alphabet and a finite list of admissible payoff func-
tions over that alphabet. The constraint satisfaction
problem consists of all CSP instances that only use ad-
missible payoff functions.

Many classical combinatorial optimization problems
are constraints satisfaction problems. Prominent exam-
ples are Max Cut, Max 2-Sat, Max q-Cut, Unique
Games, and Max 3-Sat.

Goemans and Williamson [GW95] introduced
semidefinite programming (SDP) as a technique for ap-
proximating CSPs: they showed that a natural SDP re-
laxation yields a 0.878 approximation for Max Cut.
In the following years, many SDP-based approxima-

∗Supported by NSF grants 0830673, 0832797, 528414.
†Computer Science Department, Princeton University. Part of

this work was done while visiting MSR New England.

tion algorithm have been developed for various CSPs
[FJ97, FG95, KZ97, Zwi98a, Zwi98b, Zwi99, TSSW00,
HZ01, MM01, LLZ02, CW04, GW04, Has05, CMM06a,
CMM06b, CMM07]. It is remarkable that for many
of these problems no other technique is known that
achieves equally good approximations.

Recently, Raghavendra [Rag08] identified a simple
semidefinite programming relaxation that gives the best
possible approximation for any CSP, assuming Khot’s
Unique Games Conjecture [Kho02]. Raghavendra and
Steurer [RS09b] showed that independent of the truth
of the Unique Games Conjecture, the integrality gap of
this relaxation cannot be improved for any CSP even by
adding a large class of valid inequalities. (For Max Cut
and Sparsest Cut, similar results have independently
been obtained by Khot and Saket [KS09].)

We present an algorithm that finds an approximate
solution to this relaxation in near-linear time. Combin-
ing this algorithm with a rounding scheme of Raghaven-
dra and Steurer [RS09a] yields an approximation algo-
rithm for any CSP that runs in near-linear time and has
an approximation guarantee that matches the integral-
ity gap. Assuming the Unique Games Conjecture, any
better approximation is NP-hard.

Our algorithm is based on a framework of Arora and
Kale [AK07] for solving semidefinite programs using the
Matrix Multiplicative Weights method. In this frame-
work, the crucial step is to design an efficient width-
bounded separation oracle. We show how to implement
this oracle by solving a sequence of local linear programs.
We also generalize the framework of Arora and Kale in
order to deal with “irregular” instances more efficiently.
In particular, this generalization allows us to approx-
imate Max Cut on non-regular graphs in near-linear
time without reducing the instance to a regular graph
beforehand [Tre09].

1.1 Results. Our main result is a near-linear time al-
gorithm that given a CSP instance =, computes an ap-
proximately optimal SDP solution for a CSP instance =′
that approximates =. Both kinds of approximations can
be made arbitrarily good at the cost of increasing the
running time by a constant factor. (The symbol = is
a capital “i” in Fraktur font and is intended to be pro-
nounced as “i”.)

The following theorem is a more precise statement
of our main result.

Theorem 1.1. Let = be a CSP instance on n variables
with m > n local payoff functions, alphabet size q, and
arity k. Suppose the SDP value of = is at least α. Then
for every ε > 0, we can compute in time m ·poly(kq/ε) ·
polylogn an SDP solution of value at least α − ε that
is feasible for a CSP instance =′ obtained from = by
discarding at most an ε fraction of local payoff functions.

We remark that the polylogn term in the running
time can be improved to O(logn)2. In this extended
abstract, we prove a slightly worse bound. We refer to
the full version of this paper for a proof of the O(logn)2
bound.

We obtain approximation algorithms for CSPs by
combining the previous theorem with a generic round-
ing algorithm for CSPs [RS09a]. Since this rounding al-
gorithm also runs in near-linear time, the running time
of the resulting approximation algorithm is still near-
linear.

Let Π be a CSP (e.g., Max Cut, Max k-Sat, or
Unique Games). Suppose k and q are the arity and
the alphabet size of Π.

For a CSP instance =, we denote by opt(=) the
value of an optimal assignment for = and we denote
by sdp(=) the value of an optimal SDP solution for =.
(See §2.3 for the SDP relaxation.) Following Raghaven-
dra [Rag08], we define the integrality gap curve of Π
as

gap(Π;α) def= inf
=∈Π

sdp(=)>α

opt(=) .

Theorem 1.2. Let = be an instance of the CSP Π.
Suppose sdp(=) > α. Then for every ε > 0, we can
compute an assignment for = of value gap(Π;α− ε)− ε
in time

m · 22poly(kq/ε)
· polylogn .

Notice that the doubly-exponential factor in the
running time depends only on the CSP Π and not on
the instance =. Hence, if we fix the CSP Π, this factor
is only a constant factor in the running time (albeit a
very large one).

We remark that for specific CSPs, the doubly-
exponential factor can sometimes be avoided. Instead
of combining Theorem 1.1 with the generic rounding
algorithm of [RS09a], we can combine the theorem
with other rounding algorithms which are known for
specific CSPs. Many of these rounding procedures can
be implemented very efficiently (e.g., the hyperplane
rounding of [GW95]).

The approximation guarantee of the algorithm in
Theorem 1.2 is optimal assuming the Unique Games

Conjecture. More precisely, Raghavendra [Rag08]
showed that for every α ∈ [−1, 1] and every ε > 0,
it is UG-hard to distinguish for an instance = ∈ Π be-
tween the case opt(=) > α − ε and the case opt(=) 6
gap(Π;α) + ε. Assuming the UGC, this result implies
that given an instance = ∈ Π with opt(=) > α − ε,
it is NP-hard to find an assignment for = of value
gap(Π, α) + ε.

Even without assuming the Unique Games Conjec-
ture, the approximation guarantee of the algorithm in
Theorem 1.2 is not worse than the integrality gap of
very strong SDP relaxations for CSPs. Raghavendra
and Steurer [RS09b] consider a hierarchy of SDP relax-
ations {sdpR}R∈N (the Rth relaxation contains at least
all valid linear inequalities on up to R variables) and
they show that for every R ∈ N and every ε > 0, there
exists an instance = ∈ Π such that sdpR(=) > α − ε
but opt(=) 6 gap(Π;α) + ε. (Here, R can even be
doubly-logarithmic in the size of =.) In other words,
all these strong SDP relaxations have exactly the same
integrality gap curve as the basic SDP relaxation that
we consider.

1.2 Techniques. Many of our techniques are bor-
rowed from [AK07] and [RS09a]. In the following, we
give a detailed informal description of the algorithm and
indicate the points of departure from previous works.
The description assumes some familiarity with SDP re-
laxations and CSPs. (See §2 for basic definitions and
notations.)

Solving SDPs via Matrix Multiplicative
Weights. Before discussing the specifics of our algo-
rithm for CSPs, let us first consider the following general
semidefinite feasibility problem: We are given a system
of linear inequalities over the set of density matrices
(positive semidefinite matrices with trace one) and we
desire either an (approximate) solution or a proof that
the system is infeasible.

Without loss of generality, this system has the form
X •Y1, . . . , X •Ym > 0, where X is an unknown density
matrix and Y1, . . . , Ym are linear constraints. (Note
that a linear inequality A • X > b is equivalent to
(A− bI) •X > 0 if X is a density matrix.)

We solve this semidefinite feasibility problem in an
iterative manner. Suppose the density matrix X is our
current tentative solution. If X satisfies all constraints
approximately, say X • Y1, . . . , X • Ym > −δ, we can
stop. Otherwise, we can find a constraint such that
X • Yi < −δ. In this case, we update our tentative
solution to X ′ := f(X,Yi) for some carefully chosen
function f , and repeat the process for X ′.

The basic goal of the update is to decrease the
violation of the constraint corresponding to Yi. A

natural update would be X ′ := X + εYi for some
parameter ε > 0. (Notice that with this update rule,
the algorithm essentially does gradient descent with the
goal to maximize the function F (X) = min16i6mX•Yi.
The only difference is that gradient descent would insist
to use the maximally violated constraint for updating
the current solution.) One problem with this “linear”
update is that the new tentative solution X ′ might not
be a density matrix. Hence, we would have to project
X+εYi onto the set of density matrices, which could be
computationally expensive. To avoid these problems,
[AK07] choose the update function

f(X,Y) := 1
Tr elog(X)+εY e

log(X)+εY .

Notice that f(X,Y) is a density matrix for all real sym-
metric matrices X and Y . Following [AK07], we refer to
the iterative algorithm with this update rule as Matrix
Multiplicative Weights algorithm. Similar or identical
update rules have been proposed in several other works,
e.g., [DT99, TRW05, WK06]. In fact, this update rule
can be derived from general algorithmic frameworks for
convex optimization [NY83, BT03]. All works give es-
sentially the same bounds for the convergence of the
algorithm:

If the system X • Y1, . . . , X • Ym > 0 has a solution
over density matrices, then the Matrix Multiplicative
Weights algorithm finds a density matrix X∗ with
X∗ • Y1, . . . , X

∗ • Ym > −δ after at most O(ρ/δ)2 · logn
updates (with the right choice of ε). Here, n is the
dimension of the matrices and ρ is an upper bound on
the spectral norm of the matrices Yi. The parameter ρ
is the width of the system X • Y1, . . . , X • Ym > 0.

In applications of the Matrix Multiplicative Weights
algorithm, we typically have a set X of “good” solutions
in mind (say all SDP solutions of value at least α for
a given CSP instance =) and this set X has a natural
description as a system of linear inequalities.

However, in most cases, this natural system of
linear inequalities has undesirable properties: either a
δ-approximate solution to the system is meaningless or
the system has very large width.

Hence, the challenge is to find a “good” description
of the set X by linear inequalities. We formalize the
notion of a “good” description by the notion of a width-
bounded separation oracle: A ρ-bounded δ-separating
oracle for X is an algorithm that tries to answer the
question “X ∈ X ?” for given a density matrix X. If
the oracle outputs Yes, then X is a “close” to the set
X (where the precise notion of closeness depends on
the specific application). Otherwise, the oracle outputs
No and returns a ρ-bounded δ-separating hyperplane
between X and X , i.e., a matrix Y with ‖Y ‖ 6 ρ such
that X • Y < −δ but X ′ • Y > 0 for all X ′ ∈ X .

It is easy to see that a separation oracle for the set X
is sufficient to implement the Matrix Multiplicative
Weights algorithm. (To update the current tentative
solution X, we only need to know a constraint that is
violated by X.)

Good separations for an SDP relaxation of
CSPs. The Matrix Multiplicative Weights algorithm
allows us to reduce the task of computing an approx-
imately optimal SDP solution for a given CSP instance
=, to the task of finding bounded separating hyper-
planes for the set of SDP solutions for = with value
at least α.

To design a good separation oracle for this set, the
first step is to understand when a density matrix X
is close to being a good SDP solution. Here, we use
techniques from [RS09a].

An SDP solution for a CSP instance = consists of
collection of vectors and a collection local distributions.
For every variable i ∈ V and every label a ∈ Σ, we have
a vector vi,a corresponding to the event that variable i
is assigned the label a. For every local payoff function
φ : ΣS → [−1, 1], we have a local distribution µ over
assignments x ∈ ΣS to the variable set S. An important
type of constraint in the SDP relaxation is that the inner
products of the vectors match the degree-2 correlations
of the local distributions, i.e., for all i, j ∈ S and
a, b ∈ Σ,

(1.1) 〈vi,a, vj,b〉 = E
x∼µ

xixj .

Notice that these constraints are local, in the sense
that there is no constraint between the vectors of two
variables unless they appear in the same local payoff
function. The objective in the SDP relaxation is to
maximize the value Ex∼µ φ(x) for a typical local payoff
function in =.

A robustness theorem [RS09a] for this SDP relax-
ation shows that if a (non-feasible) SDP solution satis-
fies all the constraints (1.1) up to an additive error of
ε, then the SDP solution can be modified such it satis-
fies all constraints exactly, at the cost of decreasing the
objective value by at most

√
ε · poly(kq).

The following is an important consequence of this
robustness theorem: Consider an SDP solution that
satisfies the constraints (1.1) up to a small error on
average, i.e., the average violation of constraints (1.1)
is small. Then, (by Markov’s inequality,) it has to
be the case that for most local payoff functions, all
local constraints are satisfied up to a small error. Let
us consider a new CSP instance =′ that contains only
those payoff functions whose local constraints are all
satisfied up to a small error. By the robustness theorem,
the SDP solution with the small average violation can

be modified to a feasible SDP solution for this new
instance =′. Since the instances = and =′ differ only
in very few local payoff functions, it does not effect the
approximation guarantee of our final algorithm if we
pass from = to =′.

The discussion so far shows that our separation
oracle for CSPs only has to check the average violation
of the local constraints (1.1). It turns out that if the
average violation of the local constraints is large, then
we can efficiently find separating hyperplanes of low
width. (The hyperplane will essentially be the average
of the violated local constraints.)

In the following, let us say an SDP solution for = is
good if the average violation of the local constraints (1.1)
is small and the objective value of the solution is large.
When we apply the Matrix Multiplicative Weights al-
gorithm, the natural goal is to find a density matrix X
such that Xia,jb = 〈vi,a, vj,b〉/n for a collection of vec-
tors {vi,a} that can be extended to a good SDP solution
for =. As a consequence of this setup, our separation
oracle has to solve the following task: Given a density
matrix X, either extend it to a good SDP solution for =,
or find a hyperplane that shows that X cannot be ex-
tended to a good SDP solution.

For the purpose of solving this task, we introduce
local linear programs, one for each local payoff function.
The linear program for a local payoff function φ tries
to find a local distribution µ such that on the one
hand µ matches X well (in the sense of (1.1)), and on
the other hand the expected payoff of φ under µ is as
large as possible. These local linear programs have the
following nice property: If they fail to extend X to a
good SDP solution, then we can combine their optimal
dual solutions to a separating hyperplane for X. The
fact that the hyperplane is a combination of local dual
solutions also allows us to show a good bound on the
width of the hyperplane.

One issue that we neglected in the discussion so far
is that not all constraints of the SDP relaxation for =
are local. The missing constraints are captured by the
identities

∑q
a=1 vi,a = v0 for variables i ∈ V . (Here, v0

is a unit vector.) The proof of the robustness theorem
in [RS09a] crucially uses that also these constraints are
approximately satisfied. Hence, we need to revise our
notion of “good” SDP solutions slightly. In addition
to the previous conditions, we require that the average
violation of the constraints

∑q
a=1 vi,a = v0 is small.

Another issue is how to integrate the extra vector v0 into
our current setup. We resolve this issue by representing
v0 in an implicit manner, as the (normalized) average
of the Gram vectors of X. This implicit representation
also allows us to come up with low-width hyperplanes
that separate over the constraints involving v0.

Finding separations rapidly. So far we dis-
cussed how to find a good SDP solution for a CSP in-
stance = using only a small (logarithmic) number of it-
erations of the Matrix Multiplicative Weights algorithm.
In the following, we outline how to implement each it-
eration efficiently.

The first step is to approximate the matrix exponen-
tial in the update rule by a simpler (low-degree) matrix
function. For our applications (as well as for most of the
applications in [AK07]), it is straight-forward to argue
that the effect of this approximation is negligible.

The second step is to approximate the matrix X
as the Gram matrix of low-dimensional vectors. (In
this way, we obtain a low-rank approximation X̃ of X.)
To obtain the low-dimensional vectors, we project the
Gram vectors of X onto a random low-dimensional sub-
space (Johnson–Lindenstrauss dimensionality reduction
[JL84]).

In order to argue that this approximation does not
affect the convergence of our algorithm, we need to show
that the separation oracle does not distinguish between
X and X̃: If the oracle finds a separating hyperplane
for X̃, this hyperplane should also separate X.

The separation oracles of Arora and Kale [AK07]
only look at pairwise distances of the Gram vectors.
Johnson and Lindenstrauss [JL84] showed that random
projections preserve pairwise distances arbitrarily well.
It follows that the separation oracles of Arora and Kale
do not distinguish between X and X̃.

For our CSP separation oracle, we cannot argue
in this way, because it is no longer clear that it only
depends on the pairwise distances of the vectors. In-
stead, we bound a certain (simple) norm of the hyper-
planes Y that our separation oracle can output. (This
norm will depend on the hypergraph structure of the
local payoff functions of =.) Then, we can upper bound∣∣Y • (X − X̃)

∣∣ by the dual norm of X − X̃. (The dual
norm turns out to be a 1-norm with respect to a cer-
tain measure.) Finally, we show that if X is a density
matrix, then the Johnson–Lindenstrauss lemma implies
that this dual norm of X − X̃ is small.

Irregular instances. In the discussion so far we
neglected issues that arise from irregularity of the CSP
instance =, e.g., if some variables appear in significantly
more local payoff functions than the typical variable.
In this case, the spectral norm of the hyperplanes Y
generated by the local linear programs can be very large.
However, it turns out that we can bound the spectral
norm after weighting the coordinates according to their
relative frequency in the local payoff function (the
degree of the variable). Formally, if D is the diagonal
matrix that contains the degrees of the variables, then
the spectral norm of D−1/2Y D−1/2 is bounded for

the hyperplanes Y that our oracle considers. We can
adapt the Matrix Multiplicative Weights algorithm to
work in this setting. This modified algorithm allows
to solve linear inequalities over the set of positive
semidefinite matrices X that satisfy D • X = 1. The
convergence of the algorithm is the same as before with
the crucial difference that the width of the separating
hyperplanes Y is measured by the degree-weighted
spectral norm ‖D−1/2Y D−1/2‖ (as opposed to the usual
spectral norm ‖Y ‖).

2 Preliminaries
Let Mn denote the set of real symmetric n-by-n ma-
trices. We equip the space Mn with the inner prod-
uct A •B := TrAB (sometimes called the Frobenius or
Hilbert–Schmidt product). For A ∈Mn, we let λmax(A)
denote the largest eigenvalue of A. For A,B ∈ Mn,
we write A � B if A • X 6 B • X for all positive
semidefinite (p.s.d.) X ∈ Mn. Let ∆n := {X ∈ Mn |
TrX = 1, X � 0} denote the set of n-dimensional den-
sity matrices, a quantum-mechanical analogue of prob-
ability distributions. Every matrix A ∈ Mn satisfies
λmax(A) = maxX∈∆n A•X. For a non-negative diagonal
matrix D ∈ Mn, we define a generalization of density
matrices, ∆D := {X ∈Mn | D •X, X � 0}.

2.1 Matrix Multiplicative Weights Bounds.
For ε > 0, let Eε : Mn → ∆n be the function

Eε(Y) def= exp(εY)/Tr exp(εY) .

The Matrix Multiplicative Weights method relies on the
following upper bound on the largest eigenvalue of a sum
of matrices. We use the notation Y<t := Y1 + . . .+Yt−1.
By the usual convention for empty sums, Y<1 = 0.

Theorem 2.1. ([AK07]) Let ε > 0 be small enough
and Y1, . . . , YT be a sequence in Mn with 0 � Yt � I.
Then,

λmax(Y1 + . . .+ YT) < (1 + ε)
T∑
t=1

Xt • Yt + logn
ε ,

where Xt := Eε(Y<t) .

Proof. We estimate the largest eigenvalue by the trace
of the exponentiated matrix (a common trick, see for
example the proof of the matrix-valued Chernoff bound

of Ahlswede and Winter [AW02, WX08]),

eελmax(Y1+...+YT)

6 Tr eε(Y1+...+YT)

6 Tr eε(Y1+...+YT−1)eεYT

6 Tr eε(Y1+...+YT−1)(I + (eε − 1)YT)
= (1 + (eε − 1)XT • YT) Tr eε(Y1+...+YT−1)

6 e(e
ε−1)XT •YT Tr eε(Y1+...+YT−1)

6 . . . 6 e(e
ε−1)

∑T

t=1
XT •YT · n .

The second step uses the Golden–Thompson inequal-
ity [Gol65, Tho65]. Since eε − 1 = ε + ε2/2 + O(ε3) <
ε + ε2 for small enough ε, we obtain the desired upper
bound on the largest eigenvalue.

Let D ∈ Mn be a positive diagonal matrix. (For the
first reading, it makes sense to replace all occurrences
of D and D−1/2 by the identity.)

Corollary 2.2. Let ε > 0 be small enough and let
Y1, . . . , YT be a sequence in Mn with −D � Yt � D.
Then, for every X ∈ ∆D,

T∑
t=1

(X − (1 + ε)Xt) • Yt < εT + 2 logn
ε ,

where Xt := Eε,D(Y<t) and

Eε,D(Y) def= D−1/2Eε(1
2D
−1/2Y D−1/2)D−1/2 ∈ ∆D .

Proof. Apply Theorem 2.1 to the matrices

Y ′t := 1
2D
−1/2YtD

−1/2 + 1
2I .

(Notice that Eε(Y + αI) = Eε(Y) for all α ∈ R).

2.2 Semidefinite Feasibility Problems. Let X be
a convex subset of ∆D. (We think of X as the set of
feasible solutions to a semidefinite program.)

A δ-separation oracle for X is an algorithm that
given a matrix X ∈ ∆D does one of the following things:

Yes the algorithm determines that X is close to the
set X . Here, the precise notion of closeness will
depend on the particular application.

No the algorithm finds a hyperplane that separates X
from the feasible set X by a δ-margin, i.e., it
outputs a matrix A ∈Mn and a scalar b ∈ R such
that A•X 6 b−δ and on the other hand A•X ′ > b
for all X ′ ∈ X .

A separation oracle is ρ-bounded if every A and b in the
No-case satisfy

−ρD � A− bD � ρD .

Note that the parameters ρ and δ are not independent.
If we scale the outputs A and b by the factor 1/ρ, the
resulting oracle is 1-bounded and δ/ρ-separating. We
find it more convenient to have both parameters.

Basic feasibility algorithm. The Matrix Multi-
plicative Weights bound suggests an algorithm that ei-
ther finds a point close to X or proves that X is empty.
Let Oracle be a ρ-bounded δ-separation oracle for the
set X . Iterate the following for t from 1 to T :

1. Call Oracle on input Xt := Eε,D(Y<t).

2. If the oracle outputs Yes, we stop.

3. Otherwise, the oracle provides a δ-separating hy-
perplane At •Xt 6 bt − δ. In this case, put

(2.2) Yt := 1
ρ (At − btD) .

The following lemma is a direct consequence of Corol-
lary 2.2.

Lemma 2.3. Let ε 6 δ/2ρ and T > 2ε−2 logn. If
X is non-empty, then Oracle will output Yes within
T iterations of the basic feasibility algorithm.

Proof. For the sake of contradiction, let X ∈ X and
suppose Oracle finds a separating hyperplane for T
iterations. By Corollary 2.2,

εT + 2 logn
ε >

T∑
t=1

(X − (1 + ε)Xt) • Yt > δ/ρT > 2εT ,

contradicting the premise T > 2ε−2 logn.

Efficient feasibility algorithm. We modify the
basic feasibility algorithm in two ways: First, we ap-
proximate the function Eε,D by a low-degree polyno-
mial. Second, we approximate Xt by a low-rank matrix.
See Figure 1 In the figure, d and r are parameters that
we will determine later (for our applications, they will
be at most logarithmic in the input size), and P6r

ε,D(Y)
is the degree-r approximation of exp(ε/2D−1/2Y D−1/2),

P6r
ε,D(Y) def=

r∑
i=0

1
i!

(
ε
2D
−1/2Y D−1/2

)i
.

Before proving the properties of this feasibility algo-
rithm, let us briefly justify the choice of X̃t. Since the
separation oracle expects as input a matrix from ∆D,
the choice of αt is clear.

The parameters of the random matrix Φt are chosen
such that EΦT

tΦt = I. Therefore,

E W̃ T
t W̃t = D−1/2P6r

ε,D(1/2Y<t)2D−1/2 .

For t from 1 to T , iterate the following:

1. Sample a d-by-n Gaussian matrix Φt, with each
entry independently chosen from N (0, 1/d).

2. Compute the d-by-n matrix W̃t,

W̃t := Φt · P6r
ε,D

(1
2Y<t

)
·D−1/2 .

3. Call Oracle on input X̃t := αt W̃
T
t W̃t ∈ ∆D ,

where the multiplier αt > 0 is chosen such that
D • X̃t = 1.

4. If Oracle outputs Yes, we stop.

5. Otherwise, the oracle provides a δ-separating hy-
perplane At • X̃t 6 bt − δ. Set Yt as in (2.2).

Figure 1: Efficient feasibility algorithm.

For large enough r, the matrix P6r
ε,D(1/2Y<t)2 is close

to exp(ε/2D−1/2Y<tD
−1/2). Therefore, the matrix

E W̃ T
t W̃t is, up to a scaling factor, close to Xt =

Eε,D(Y<t).
The following lemma shows that we can compute

(a Gram representation of) X̃t quickly if matrix-vector
multiplication with the matrices At is efficient.

Lemma 2.4. Suppose we can perform matrix-vector
multiplication with the matrices At in time Tmatrix-vector.
Then, for every t, we can compute αt and W̃t in time
O(t · r · d · Tmatrix-vector).

Proof. We can compute a row of W̃t by multiplying a
row of Φt to the matrix P6r

ε,D(1/2Y<t)D−1/2 from the left.
Using the structure of P6r

ε,D(1/2Y<t), this multiplication
can be carried out in time O(t·r ·Tmatrix-vector). (Here, we
use that matrix multiplication is linear and associative.)

To compute αt, it is enough to compute the diagonal
of W̃ T

t W̃t, which can be done in time O(d · n) (after
computing W̃t).

We need to prove an analogue of Lemma 2.3 for
the efficient feasibility algorithm. It is no longer enough
that the oracle is ρ-bounded and δ-separating. In the
next lemma, we formulate a simple condition for the
oracle that allows us to prove an analogue of Lemma 2.3.
(It is cumbersome to check that a concrete separation
oracle satisfies this condition. In Definition 2.6, we give
a condition that is easier to verify and that implies the
condition in the next lemma.)

Lemma 2.5. Let ε = δ/4ρ and T = 2ε−2 logn. Suppose
that for every t 6 T ,

P
Φt

{
Oracle outputs No in iteration t

and At •Xt > bt − δ/2

}
� 1/T .

Then, if X is non-empty, Oracle will output Yes
with high probability within T iterations of the efficient
feasibility algorithm.

Before proving the lemma, let us first clarify the condi-
tion of the lemma. In iteration t, we call Oracle on
matrix X̃t, which depends on the matrices Y<t and Φt.
The lemma asserts that for all possibilities of Y<t, the
probability of the specified event over the randomness
of Φt is significantly smaller than 1/T . Notice that if
the specified event occurs then the δ-separating hyper-
plane that Oracle exhibited for X̃t is not even δ/2-
separating for Xt. (Here, the matrices Xt are defined
as in the basic feasibility algorithm, Xt = Eε,D(Y<t).)
Proof of Lemma 2.5. Suppose X is non-empty. From
the union bound, it follows that with high probability
none of the specified events occurs. For the sake of
contradiction, assume that Oracle did not output Yes
within T iterations. Then, the matrices Y1, . . . , YT are
δ/2-separating hyperplanes for the matrices X1, . . . , XT

with Xt = Eε,D(Y<t). Lemma 2.3 shows that these
hyperplanes contradict our assumption that X is non-
empty.

Robust Separation Oracle. The following defi-
nition abstracts the condition of Lemma 2.5 so that it
is easier to verify for a concrete oracle.

Definition 2.6. We say that a ρ-bounded δ-separation
oracle is d-robust if for every matrix X ∈ ∆D with
X = W TW ,

P
Φ

{
Oracle outputs No on input X̃

and A •X > b− 3δ/4

}
� (δ/ρ)2

logn .

Here, Φ is a d-by-n Gaussian matrix, with each com-
ponent chosen from N (0, 1/d), and X̃ := αW TΦTΦW ,
where multiplier α > 0 is chosen such that D • X̃ = 1.

Lemma 2.7. Let ε = δ/4ρ and T = 2ε−2 logn. Suppose
we have a d-robust ρ-bounded δ-separation oracle. Then,
if we set r = 10ε−1 logn, the oracle satisfies the
condition of Lemma 2.5.

Proof. See §A.2.

The Johnson–Lindenstrauss lemma is used to show that
the separation oracle we construct is d-robust for d
logarithmic in n.

Lemma 2.8. ([JL84]) Let Φ be a d-by-n Gaussian
matrix, with each entry independently chosen from
N (0, 1/d). Then, for every vector u ∈ Rn and every
ε ∈ (0, 1),

P
Φ

{
‖Φu‖ = (1± ε)‖u‖

}
> 1− e−Ω(ε2d) .

2.3 Constraint Satisfaction Problems. An in-
stance = of a constraint satisfaction problem consists of
a set of variables V , an alphabet Σ, and a list of “local”
payoff functions φ1, . . . , φm with φt : ΣSt → [−1, 1] for
a subset St ⊆ V . The payoff functions come with non-
negative weights w1, . . . , wm such that

∑
t wt = 1. We

put n := |V |, q := |Σ| and k := maxt|St|. (We think of
the parameters q and k as constant or at least very small
compared to n and m.) For an assignment x ∈ ΣV , we
let =(x) :=

∑
t wtφt(x) denote the average value of a

payoff function for the assignment x. (Formally, we ex-
tend φt to ΣV such that φt(x) := φt(x|St), where x|St
is the restriction of the assignment x to the variable
set St.) Finally, we can define the (optimal) value of =
as opt(=) := maxx∈ΣV =(x).

SDP Relaxation. We consider the following
semidefinite relaxation SDP(=),

maximize
∑
t

wt E
x∼µt

φ(x)(2.3)

subject to 〈vi,a, vj,b〉 = P
x∼µt

{
xi = a, xj = b

}
(2.4)

(i, j ∈ St, a, b ∈ Σ, t ∈ [m]) ,

〈vi,a, v0〉 = P
x∼µt

{
xi = a

}
(2.5)

(i ∈ St, a ∈ Σ, t ∈ [m]) ,
‖v0‖2 = 1 .(2.6)

Here, v0 is a fixed unit vector and we maximize over
all sets of vectors {vi,a}i∈V,a∈Σ ⊆ Rqn and over all
sequences of functions µ1, . . . , µt : ΣSt → R with µt > 0
and

∑
x∈ΣSt µt(x) = 1. We can interpret a function

µt as a distribution over assignments x ∈ ΣSt . The
notation x ∼ µt means that we sample an assignment
x ∈ ΣSt according to the distribution µt. Note that the
expressions in (2.3) and (2.4) are indeed linear functions
in the values of µ1, . . . , µm, because

E
x∼µt

φ(x) =
∑
x∈ΣSt

µt(x)φt(x)

and P
x∼µt

{xi = a, xj = b} =
∑
x∈ΣSt

xi=a,xj=b

µt(x) .

We define sdp(=) to be the optimal objective value of
this SDP relaxation.

The vectors of a feasible solution for SDP(=) satis-
fies the following relation.

Fact 2.9. For every variable i ∈ V (that appears in at
least one set St),

v0 =
∑
a∈Σ

vi,a .

We remark that the constraints (2.5)–(2.6) are
implied by the other constraints. In particular, the
optimal value sdp(=) would not change if we dropped
constraints (2.5)–(2.6).

Robustness of SDP Relaxations. We are inter-
ested in the sensitivity of the relaxation sdp(=) to small
errors in the constraints (2.4). For ε > 0, consider the
semidefinite relaxation SDPε(=),

max
∑
t

wt E
x∼µt

φ(x)(2.7)

s. t.
∣∣∣∣〈vi,a, vj,b〉 − P

x∼µt

{
xi = a, xj = b

}∣∣∣∣ 6 ε(2.8)

(i, j ∈ St, a, b ∈ Σ, t ∈ [m]) ,∣∣∣∣〈vi,a, v0〉 − P
x∼µt

{
xi = a

}∣∣∣∣ 6 ε(2.9)

(i ∈ St, a ∈ Σ, t ∈ [m]) ,∣∣‖v0‖2 − 1
∣∣ 6 ε .(2.10)

Let sdpε(=) denote the optimal objective value of this
relaxation. The following theorem shows that sdpε(=)
is always close to sdp(=).

Theorem 2.10. ([RS09a]) For any CSP instance =
with alphabet size k and arity q,

sdp(=) 6 sdpε(=) 6 sdp(=) +
√
ε · poly(kq) .

We remark that the constraints (2.9)–(2.10) seem neces-
sary for this robustness theorem (at least with the cur-
rent proof in [RS09a]). In contrast, the corresponding
exact constraints (2.5)–(2.6) are implied in SDP(=).

3 SDP Algorithm for CSPs
3.1 A Local Linear Program. Let S be a set
of k variables and, as before, let Σ be an alphabet
of q symbols. Let MS×Σ denote the set of real
symmetric matrices with rows and columns indexed by
pairs (i, a) ∈ S × Σ. For a payoff function φ : ΣS →
[−1, 1] and a matrix X ∈ MS×Σ, let α(X,φ) be the
optimal objective value of the following linear program,

maximize E
x∼µ

φ(x)− C · ‖X −M(µ)‖∞ .(3.11)

Here, the maximum is over all distributions µ on ΣS , C
is a parameter that we will determine later and M is
the linear mapping from ΣS → R toMS×Σ defined as

M(µ)iajb
def=

∑
x∈ΣS

xi=a, xj=b

µ(x) .

We denote by µ(X,φ) an optimal solution to the linear
program. Note that if µ is a distribution, thenM(µ)iajb
is the probability of the event {xi = a, xj = b} for
x ∼ µ.

The norm ‖X −M(µ)‖∞ measures the maximum
violation of the constraints (2.4). More precisely, the
relaxed constraint (2.8) is equivalent to ‖X−M(µ)‖∞ 6
ε. We remark that the local linear program (3.11) is
essentially equivalent to maximizing Ex∼µ φ(x) over all
distributions µ that satisfy ‖X −M(µ)‖∞ 6 1/C. One
advantage of the formulation (3.11) is that the program
is always feasible.

By linear programming duality (see §A.1),

(3.12) α(X,φ) = min
Y ∈MS×Σ
‖Y ‖16C

X • Y + max
ΣS
{φ−M∗(Y)} .

Here, M∗ is the adjoint of M (a linear mapping from
MS×Σ to ΣS → R),

M∗(Y)(x) =
∑
ij

Yixijxj .

We denote by Y (X,φ) a minimizer of (3.12).
Properties of local linear programs. Let = be

a CSP instance as in Section 2.3. For convenience, we
assume that |St| = k for all t ∈ [m]. Let {vi,a}i∈V,a∈Σ
be a collection of vectors. Let Xt ∈ MSt×Σ denote
the Gram matrix of the vectors for the variables in
St. (Recall that = is specified by local payoff functions
φ1, . . . , φm and St ⊆ V is the set of variables that the
local payoff function φt depends on.)

Fact 3.1. If the set of vectors {vi,a}i∈V,a∈Σ can be
extended to a feasible solution for SDP(=) of value α,
then

m∑
t=1

wt · α(Xt, φt) > α .

The following lemma is a partial converse of the previous
fact.

Lemma 3.2. Suppose C = 3/δ and

(3.13)
m∑
t=1

wt · α(Xt, φt) > α− δ .

Furthermore, assume there exists a vector v0 such that
‖v0‖2 = 1± δ and

(3.14)
∑
t

wt
∑
i∈St

∑
a∈Σ

∣∣〈vi,a, v0〉 − ‖vi,a‖2∣∣ 6 δ .

Then, there exists a subset T ⊆ [m] of weight w(T) >
1− 2

√
δ such that sdp√δ(=|T) > α− 2

√
δ and therefore

sdp(=|T) > α− poly(kq) · δ1/4.

Proof. We may assume δ 6 1. Let µt = µ(Xt, φt). Let
T1 be the set of indices t such ‖Xt −M(µt)‖∞ >

√
δ,

and let T2 be the set of indices t such that∑
i∈St

∑
a∈Σ

∣∣〈vi,a, v0〉 − ‖vi,a‖2∣∣ > √δ .
Let T := [m]\T1∪T2 and consider the CSP instance =|T .
By construction, v0, {vi,a}, {µt}t∈T forms a feasible
solution for the relaxation SDP√δ(=|T). It remains to
estimate the weight of T . (Here, the weight of T is
defined as w(T) =

∑
t∈T wt.) Notice that (3.13) implies

that
m∑
t=1

wt‖Xt −M(µt)‖∞ 6 (2 + δ)/C 6 δ .

Therefore, w(T1) 6
√
δ (Markov’s inequality). From

(3.14), it follows that w(T2) 6
√
δ (again Markov’s

inequality). We conclude that w(T) > 1 − w(T1) −
w(T2) > 1− 2

√
δ. To finish the proof, we need to lower

bound sdpε(=|T). The feasible solution for SDPε(=|T)
given by v0, {vi,a}, {µt}t∈T has value at least∑
t∈T

wt · α(Xt, φt) > α− δ − w(T1)− w(T2) > α− 3
√
δ .

3.2 Separation Oracle. Let = be a CSP instance as
in Section 2.3. For convenience, we assume that |St| = k
for all t ∈ [m].

Let di be the normalized degree of variable i, that
is, di :=

∑
t,St3i wt/k. (Notice that

∑
i∈V di = 1.)

Consider the vector d ∈ RV×Σ with components
di,a = di. Let D ∈ MV×Σ be the diagonal matrix
corresponding to d. Finally, recall that ∆D denotes the
set of p.s.d. matrices X ∈MV×Σ with D •X = 1.

In Figure 2, we describe a separation oracle for the
set X ⊆ ∆D that consists of all SDP solutions for =
with objective value at least α. (In Section 2.3, we said
that a SDP solution consist of a collection of vectors
{vi,a}i∈V,a∈Σ and a sequence of distributions µ1, . . . , µm
over local assignments. Therefore, it is more precise to
say that X is the set of matrices X ∈MV×Σ such that
there exists an SDP solution of value at least α with
Xia,jb = 〈vi,a, vj,b〉.)

CSP-Oracle (=, X, α, δ):
1. Let {vi,a}i∈V,a∈Σ ⊆ Rd be Gram vectors for X

(assumed to be part of the input).

2. For every t ∈ [m], compute Xt ∈ MSt×Σ, the
Gram matrix of the vectors for the variables in
St.

3. For every t ∈ [m], solve the local linear program
(3.11) for Xt and φt, and compute αt = α(Xt, φt)
and Yt = Y (Xt, φt). We choose the parameter C
of the local LPs as 3/δ.

4. If
∑
t wtαt 6 α − δ, output No and return the

hyperplane given by the matrix A :=
∑
t wtYt and

the scalar b := α−
∑
t wt maxΣSt (φt −M∗(Yt)).

5. Compute v0 =
∑
i di
∑
a∈Σ vi,a.

6. If
∣∣‖v0‖2 − 1

∣∣ > δ, output No and return the hy-
perplane corresponding to the violated constraint.
(Here, b := −s with s = sign‖v0‖2 − 1 and
A := −s · ddT, where d ∈ RV×Σ has components
di,a := di.)

7. If
∑
i di
∑
a

∣∣〈vi,a, v0〉 − ‖vi,a‖2∣∣ > δ, output No
and return the hyperplane corresponding to the
violated constraint. (Here, b := 0 and A :=
−d · dT ? S − D1/2 diag(s)D1/2, where si,a is
the sign of 〈vi,a, v0〉 − ‖vi,a‖2, S is the matrix
Sia,jb := (si,a + sj,b)/2, and ? denotes compo-
nentwise multiplication.)

8. Otherwise, output Yes.

Figure 2: Separation oracle for CSPs.

Lemma 3.3. The oracle is δ-separating for the set X .

Proof. In step 6 and step 7, it is clear that we return
a constraint that is valid for the set X (see (2.5)–(2.6)
and Fact 2.9). On the other hand, the input matrix X
violates the constraint by δ in these cases.

Let us verify that also step 4 is correct. Let X ′ ∈ X
be a feasible SDP solution of value at least α. Let
α′t = α(X ′t, φt) where X ′t ∈MSt×Σ is defined analogous
to Xt. Since X ′ is a feasible and has value at least
α, we have

∑
t wtα

′
t > α (see Fact 3.1). However,

from the dual characterization of α(·, ·) it follows that
α′t 6 X ′t •Yt+max(φt−M∗(Yt)). Thus,

∑
t wtX

′
t •Yt >

α −
∑
t wt max(φt − M∗(Yt)). Hence, the constraint

in step 4 is valid for the set X . On the other hand,
if
∑
t wtαt 6 α − δ, the input matrix X violates this

constraint by at least δ.

Lemma 3.4. If the oracle outputs Yes, then there exists
a set T ⊆ [m] with w(T) > 1 − 2

√
δ such that the

restriction =|T of the CSP instance = to the payoff
functions {φt | t ∈ T} satisfies

sdp√δ(=|T) > α− poly(kq)
√
δ

and therefore sdp(=|T) > α−δ1/4 ·poly(kq) (using The-
orem 2.10). Furthermore, given the Gram vectors {vi,a}
of the input matrix X for the oracle, we can compute in
time m · d · poly(qk) a feasible solution for SDP(=|T) of
value at least α− δ1/4 · poly(kq).

Proof. Immediate from Lemma 3.2 and the fact that the
proof of the robustness theorem in [RS09a] yields an ef-
ficient algorithm that converts a solution for SDPε(=|T)
to a solution for SDP(=|T) .

Lemma 3.5. The oracle is ρ-bounded for ρ =
poly(kq/δ).

Proof. Let us consider the matrix A =
∑
t wtYt. Since

‖Yt‖1 6 C, the spectral norm of Yt is also bounded by
C. Let It be the identity matrix inMV×Σ restricted to
the rows corresponding to the variables in St. Let X ′
be any p.s.d. matrix inMV×Σ. We have to show that
|A • X ′| 6 ρD • X ′. Since the spectral norm of Yt is
bounded by C, we have |A •X ′| 6

∑
t wtC · It •X ′ =

Ck · D • X ′, as desired. For the remaining cases, the
calculations are similar (see end of §A.3 for details).

Lemma 3.6. The algorithm CSP-Oracle can be im-
plemented to run in time

m · d · poly(qk) ,

assuming the input matrix X is represented by d-
dimensional Gram vectors. If the algorithms outputs
No it returns (an implicit representation of) a ma-
trix for which we can compute matrix-vector products
in time m · poly(kq).

Proof. The most expensive part of the algorithm is
to solve the local linear programs. Using a polyno-
mial time algorithm for solving linear programs, each
local LP can be solved in time qO(k). All computa-
tions involving the vectors (computing the local Gram
matrices Xt, computing the vector v0, . . .) can be
carried out in time m · d · poly(kq). The matrix∑
t wtYt has at most mkq non-zero entries. Hence,

matrix-vector multiplication is easy. The matrices cor-
responding to the expressions

∑
ij didj

∑
ab〈vi,a, vj,b〉

or
∑
i∈S
∑
j didj

∑
ab si,a〈vi,a, vj,b〉 are not sparse, but

they have low-rank. Again, matrix-vector multiplica-
tion is easy.

3.3 Robustness of the Separation Oracle. In the
following, we will show that CSP-Oracle is d-robust
for d = poly(kq/δ) · logn.

Let Y be the set of matrices Y = A − bD that
CSP-Oracle could possibly output as separating hy-
perplanes. Let us define a norm onMV×Σ by

‖Z‖Y
def= sup

Y ∈Y
|Y • Z| .

Let X ∈ ∆D with X = W TW . Let {wi,a}i∈V,a∈Σ
be the columns of W and let S be the set of variables
with ‖wi,a‖2 > 4 for some a ∈ Σ. Let X̃ := αWΦTΦW ,
where α > 0 is chosen such that D • X̃ = 1 and Φ is a
Gaussian matrix with d rows and columns indexed by
V ×Σ. The components of Φ are chosen independently
from N (0, 1/d). Let {w̃i,a}i∈V,a∈Σ be the columns of
W̃ :=

√
αΦW .

We show that CSP-Oracle is robust by proving
that ‖X − X̃‖Y is at most δ/4 with high probability,
say 1− 1/n.

The first step of the proof is to upper bound ‖·‖Y
by a simpler norm. The reader can verify the following
lemma in a straight-forward way, by considering each
of the three types of hyperplanes that CSP-Oracle
can output (corresponding to step 4, step 6, or step 7).
For the sake of completeness, we present a proof in
Appendix A.3.
Lemma 3.7.

‖Z‖Y 6 poly(kq/δ) ·
(∑

t

wt
∑
i,j∈St

∑
a,b

|zia,jb|(3.15)

+
∑
ij

didj
∑
ab

|zia,jb|

+
∑
i

di
∑
a

|zia,ia|
)
.

Lemma 3.8. For some d = poly(kq/δ) · logn,

P
Φ

{
‖X − X̃‖Y 6 δ

4

}
> 1− 1

n .

Proof. Let γ > 0 (a parameter we determine later). By
Lemma 2.8, with probability pJL = 1−O(qn)2 ·e−Ω(γ2d),
all i, j ∈ V and a, b ∈ Σ satisfy

‖w̃i,a + w̃j,b‖2 = (1± γ)‖wi,a + wj,b‖2

‖w̃i,a − w̃j,b‖2 = (1± γ)‖wi,a − wj,b‖2

In this case, we can bound Z = X − X̃ as follows

|zia,jb| = 1
4

∣∣∣‖wi,a + wj,b‖2 − ‖wi,a − wj,b‖2

−‖w̃i,a + w̃j,b‖2 + ‖w̃i,a−w̃j,b‖2
∣∣∣

6 1
4γ ·

(
‖wi,a + wj,b‖2 + ‖wi,a − wj,b‖2

)
= 1

2γ ·
(
‖wi,a‖2 + ‖wj,b‖2

)

Combining this bound of |zia,jb| with Lemma 3.7, yields

‖Z‖Y 6 γ · poly(kq/δ) ·
∑
i

di
∑
a

‖wi,a‖2 .

(Here, we use that the column and row marginal distri-
butions of the measures in the bound of Lemma 3.7 are
equal to the distribution (d1, . . . , dn).)

Since D • X = 1, we can choose γ = poly(δ/kq)
such that ‖Z‖Y 6 δ/4. Thus, for some d = O(log qn/γ2) =
poly(kq/δ)·logn, the success probability is pJL > 1−1/n
as desired.

Lemma 3.9. For every δ > 0 and for some d =
poly(qk/δ) · logn and ρ = poly(qk/δ), CSP-Oracle
is a d-robust ρ-bounded δ-separation oracle for the set
X (the set of SDP solutions for = of value at least α).

Proof. Lemma 3.3 and Lemma 3.5 show that CSP-
Oracle is ρ-bounded and δ-separating. To verify that
CSP-Oracle is d-robust we need to upper bound the
probability of the event,

E :=
{

Oracle outputs No on input X̃
and A •X > b− 3δ/4δ

}
.

Whenever E occurs, we have (A − bD) • X̃ 6 −δ but
(A− bD) • X̃ > −3δ/4. Hence, the event E implies that
‖X − X̃‖Y > δ/4. Using Lemma 3.8, we can conclude
that P {E} 6 1/n, as desired.

3.4 Putting things together.

Proof of Theorem 1.1. Let = be a CSP instance as in
Section 2.3. Suppose we know a good estimate α ∈
[−1, 1] of sdp(=), say α 6 sdp(=) 6 α + ε. (If
we do not have a good estimate, we can find one by
searching through 2/ε possibilities for α.) We apply
the efficient feasibility algorithm in Section 2.2 (based
on Matrix Multiplicative Weights) with CSP-Oracle
as separation oracle. Lemma 3.9 shows that CSP-
Oracle is d-robust ρ-bounded and δ-separating (for
every δ > 0 and appropriate d and ρ). From Lemma 2.7
and Lemma 2.5, it follows that CSP-Oracle outputs
Yes after O(ρ/δ)2 · logn iterations of the efficient
feasibility algorithm. Lemma 3.4 shows that we can
convert the final matrix (that the oracle accepted) to
a feasible solution for SDP(=|T) with value at least
α − δ1/4poly(kq). Here, T is a subset of the local
payoff functions of = of weight at least 1 − 2

√
δ. Let

us choose δ = ε4/poly(kq) such that the value of this
SDP solution is at least α− ε and the weight of T is at
least 1 − ε. Combining Lemma 3.6 and Lemma 2.4,
we see that each iteration of the efficient feasibility
algorithm runs in time m · poly(qk/δ) · polylogn (if

we choose the parameters r and d appropriately). It
follows that the overall running time is bounded by
m · poly(qk/ε) · polylogn.

Proof of Theorem 1.2. Let = be a CSP instance as
before and suppose that sdp(=) > α. By Theorem 1.1,
we can compute a feasible SDP solution of value α−ε for
an instance =|T , where T is a subset of the local payoff
functions of = of weight at least 1 − ε. By [RS09a,
Theorem 1.1], we can round this SDP solution to an
assignment of value gap(Π;α − 2ε) − ε for =|T in time
m ·exp exp poly(kq/ε) ·polylogn. Since T has weight 1−
ε, this assignment has value at least gap(Π;α−2ε)−3ε
for =.

Acknowledgments. Many thanks to Sanjeev Arora,
Satyen Kale, Prasad Raghavendra, and Nisheeth Vish-
noi for invaluable discussions about this topic.

References

[AK07] Sanjeev Arora and Satyen Kale, A combinatorial,
primal-dual approach to semidefinite programs, STOC,
2007, pp. 227–236.

[AW02] Rudolf Ahlswede and Andreas Winter, Strong con-
verse for identification via quantum channels, IEEE
Transactions on Information Theory 48 (2002), no. 3,
569–579.

[BT03] Amir Beck and Marc Teboulle, Mirror descent and
nonlinear projected subgradient methods for convex
optimization, Oper. Res. Lett. 31 (2003), no. 3, 167–
175.

[CMM06a] Moses Charikar, Konstantin Makarychev, and
Yury Makarychev, Near-optimal algorithms for unique
games, STOC, 2006, pp. 205–214.

[CMM06b] Eden Chlamtac, Konstantin Makarychev, and
Yury Makarychev, How to play unique games using
embeddings, FOCS, 2006, pp. 687–696.

[CMM07] Moses Charikar, Konstantin Makarychev, and
Yury Makarychev, Near-optimal algorithms for max-
imum constraint satisfaction problems, SODA, 2007,
pp. 62–68.

[CW04] Moses Charikar and Anthony Wirth, Maximizing
quadratic programs: Extending grothendieck’s inequal-
ity, FOCS, 2004, pp. 54–60.

[DT99] Moshe Doljansky and Marc Teboulle, An inte-
rior proximal algorithm and the exponential multiplier
method for semidefinite programming, SIAM J. Optim.
9 (1999), no. 1, 1–13 (electronic).

[FG95] Uriel Feige and Michel X. Goemans, Aproximating
the value of two prover proof systems, with applica-
tions to MAX 2SAT and MAX DICUT, ISTCS, 1995,
pp. 182–189.

[FJ97] A. Frieze and M. Jerrum, Improved approximation
algorithms for MAX k-CUT and MAX BISECTION,
Algorithmica 18 (1997), no. 1, 67–81.

[Gol65] Sidney Golden, Lower bounds for the Helmholtz
function, Phys. Rev. 137 (1965), no. 4B, B1127–B1128.

[GW95] Michel X. Goemans and David P. Williamson, Im-
proved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming,
J. ACM 42 (1995), no. 6, 1115–1145.

[GW04] Michel X. Goemans and David P. Williamson,
Approximation algorithms for MAX-3-CUT and other
problems via complex semidefinite programming, J.
Comput. System Sci. 68 (2004), no. 2, 442–470.

[Has05] Gustav Hast, Beating a random assignment,
APPROX-RANDOM, 2005, pp. 134–145.

[HZ01] Eran Halperin and Uri Zwick, Approximation algo-
rithms for MAX 4-SAT and rounding procedures for
semidefinite programs, J. Algorithms 40 (2001), no. 2,
184–211.

[JL84] William B. Johnson and Joram Lindenstrauss, Ex-
tensions of Lipschitz mappings into a Hilbert space,
Conference in modern analysis and probability (New
Haven, Conn., 1982), Contemp. Math., vol. 26, Amer.
Math. Soc., Providence, RI, 1984, pp. 189–206.

[Kho02] Subhash Khot, On the power of unique 2-prover 1-
round games, STOC, 2002, pp. 767–775.

[KS09] Subhash Khot and Rishi Saket, SDP integrality gaps
with local l1-embeddability, FOCS, 2009, To appear.

[KZ97] Howard J. Karloff and Uri Zwick, A 7/8-
approximation algorithm for max 3sat?, FOCS, 1997,
pp. 406–415.

[LLZ02] Michael Lewin, Dror Livnat, and Uri Zwick, Im-
proved rounding techniques for the max 2-sat and max
di-cut problems, IPCO, 2002, pp. 67–82.

[MM01] Shiro Matuura and Tomomi Matsui, 0.863-
approximation algorithm for MAX DICUT,
RANDOM-APPROX, 2001, pp. 138–146.

[NY83] A. S. Nemirovsky and D. B. Yudin, Problem com-
plexity and method efficiency in optimization, A Wiley-
Interscience Publication, John Wiley & Sons Inc., New
York, 1983, Translated from the Russian and with a
preface by E. R. Dawson, Wiley-Interscience Series in
Discrete Mathematics.

[Rag08] Prasad Raghavendra, Optimal algorithms and in-
approximability results for every CSP?, STOC, 2008,
pp. 245–254.

[RS09a] Prasad Raghavendra and David Steurer, How to
round any CSP, FOCS, 2009, To appear.

[RS09b] , Integrality gaps for strong SDP relaxations
of unique games, FOCS, 2009, To appear.

[Tho65] Colin J. Thompson, Inequality with applications in
statistical mechanics, Journal of Mathematical Physics
6 (1965), no. 11, 1812–1813.

[Tre09] Luca Trevisan,Max Cut and the smallest eigenvalue,
STOC, 2009, pp. 263–272.

[TRW05] Koji Tsuda, Gunnar Rätsch, and Manfred K.
Warmuth, Matrix exponentiated gradient updates for
on-line learning and bregman projection, Journal of
Machine Learning Research 6 (2005), 995–1018.

[TSSW00] Luca Trevisan, Gregory B. Sorkin, Madhu Su-
dan, and David P. Williamson, Gadgets, approxima-

tion, and linear programming, SIAM J. Comput. 29
(2000), no. 6, 2074–2097 (electronic).

[WK06] Manfred K. Warmuth and Dima Kuzmin, Online
variance minimization, COLT, 2006, pp. 514–528.

[WX08] Avi Wigderson and David Xiao, Derandomizing
the ahlswede-winter matrix-valued chernoff bound using
pessimistic estimators, and applications, Theory of
Computing 4 (2008), no. 1, 53–76.

[Zwi98a] Uri Zwick, Approximation algorithms for con-
straint satisfaction problems involving at most three
variables per constraint, SODA, 1998, pp. 201–210.

[Zwi98b] , Finding almost-satisfying assignments,
STOC, 1998, pp. 551–560.

[Zwi99] , Outward rotations: A tool for rounding
solutions of semidefinite programming relaxations, with
applications to max cut and other problems, STOC,
1999, pp. 679–687.

A Appendix
A.1 Dual of the Local Linear Program

max
µ
〈µ, φ〉 − C‖X −M(µ)‖∞

= max
µ

min
Y
〈µ, φ〉+ C〈X −M(µ), Y 〉

= min
Y

max
µ
〈µ, φ〉+ C〈X −M(µ), Y 〉

= min
Y
〈X,C · Y 〉+ max

µ
〈µ, φ〉 − 〈µ,M∗(C · Y)〉

= min
Y
〈X,C · Y 〉+ max

ΣS
{φ−M∗(C · Y)} .

Here, µ ranges over all distributions on ΣS and Y
ranges over all matrices in MS×Σ with ‖Y ‖1 = 1.
All inner products refer to the natural coordinate-wise
inner products. In the second equation, we use linear
programming duality. In the third equation, we use that
〈M(µ), Y 〉 = 〈µ,M∗(Y)〉 for all µ and Y . (This identity
is the same as the familiar fact (Ax)Ty = xT(ATy).)

A.2 Robust Separation Oracle. Let P6r
ε (Y) be

the degree-r approximation of eεY ,

P6r
ε (Y) def=

r∑
i=0

1
i! (εY)i .

Lemma A.1. (see e.g. [AK07]) For every Y ∈Mn,

‖eεY − P6r
ε (Y)‖ 6 eε‖Y ‖ · e−r .

Lemma A.2. Let ε = δ/4ρ and T = 2ε−2 logn. Let r >
10ε−1 logn. For every t 6 T , define matrices W ′t , X ′t ∈
Mn,

W ′t := Pε,D(1
2Y<t)D

−1/2

X ′t := α′tW
′T
t W

′
t ,

where the multiplier α′t > 0 is chosen such that X ′t ∈
∆D. Then, for every Y ′ ∈Mn with −ρD � Y ′ � ρD,

|Y ′ • (Xt −X ′t)| 6 1
n .

Proof. Fix a particular t 6 T . The only property of
the matrix Y<t that we use is −T · D � Y<t � T · D.
Let Y := D−1/2Y<tD

−1/2 and Z := P6r
ε (1/2Y)2 − eεY .

Using Lemma A.1, we bound the spectral norm of Z,

‖Z‖ =
∥∥∥(P6r

ε

(1
2Y
)
− eεY/2

)
P6r
ε

(1
2Y
)

+ eεY/2
(
P6r
ε

(1
2Y
)
− eεY/2

)∥∥∥
6 2 · ‖P6r

ε

(1
2Y
)
− eεY/2‖ · ‖eεY/2‖

6 2eε‖Y ‖e−r 6 2eεT−r .

Next, let us estimate the difference of the normalization
factors α := 1/Tr eεY and α′ := α′t = 1/TrP6r

ε (1/2Y)2.

|1/α− 1/α′| = |TrZ| 6 n‖Z‖ 6 2neεT−r .

Since 0 6 α 6 1/n, it follows that |α − α′| 6 2eεT−r.
Therefore, ‖D1/2(X ′t − Xt)D1/2‖ 6 min{α, α′}‖Z‖ +
|α− α′|‖eεY ‖ 6 4e2εT−r.

We bound |Y ′ • (Xt −X ′t)| as follows

|Y • (Xt − X̃ ′t)| 6 ‖D−1/2Y D−1/2‖
· ‖D1/2(Xt − X̃ ′t)D1/2‖∗

6 ρ · n · ‖D1/2(Xt − X̃ ′t)D1/2‖
6 ρn4e2εT−r � 1/n .

Here ‖·‖∗ is the dual norm of the spectral norm (called
nuclear norm). It is well-known that this dual norm is
equal to the sum of the singular values. Therefore, we
can upper bound it by n times the spectral norm.

Lemma A.3. (Restatement of Lemma 2.7) Let
ε = δ/4ρ and T = 2ε−2 logn. Suppose we have a
d-robust ρ-bounded δ-separation oracle. Then, if we set
r = 10ε−1 logn, the oracle satisfies the condition of
Lemma 2.5.

Proof. Since the oracle is d-robust ρ-bounded δ-
separating, we have

P
Φ

{
Oracle outputs No on input X̃t

and A •X ′t > b− 3δ/4

}
� (δ/ρ)2

logn .

Recall the notation from Lemma A.2, W ′t =
Pε,D(1/2Y<t)D−1/2 and X ′t = α′tW

′
t

T
W ′t . Notice that

with this notation, we have Xt = αtW
′
t

TΦT
tΦtW ′t .

By Lemma A.2,

|(A− bD) • (X ′t −Xt)| 6 1/n 6 δ/4 .

Therefore, the event

E :=
{

Oracle outputs No on input X̃t

and A •Xt > b− δ/2

}
is a subset of the event

E ′ :=
{

Oracle outputs No on input X̃t

and A •X ′t > b− 3δ/4

}
Thus, P {E} 6 P {E ′} � 1/T as desired.

A.3 Robustness of CSP-Oracle. To prove
Lemma 3.7, we first upper bound a certain simple norm
of the matrices in Y. Then, we relate the dual of this
norm to the right-hand side of Lemma 3.7.

Let µ be the probability measure on (V × Σ)2,

µia,jb
def= 1

3 ·
di
q I{i=j, a=b} + 1

3 ·
didj
q2 + 1

3 ·
∑

t : St3i,j

wt
(kq)2 .

(With probability 1/3, we pick a diagonal entry accord-
ing to the degree distribution. With probability 1/3, we
pick a row and a column independently according to the
degree distribution. With the remaining probability, we
pick an index t with probability wt and pick two random
variables i, j ∈ St and two random labels a, b ∈ Σ.)

We will think of µ as a measure on entries of the
matrices inMV×Σ.

The next lemma shows that the ∞-norm of the
matrices in Y normalized by the measure µ is bounded.

Lemma A.4. For every matrix Y ∈ Y,

∀i, j ∈ V. ∀a, b ∈ Σ. |Yia,jb| 6 κ · µia,jb

and κ = poly(kq/δ).

Before proving this lemma, let us first observe that
it has the desired implication.
Proof of Lemma 3.7. We calculate

‖Z‖Y = sup
Y ∈Y
|Y • Z|

6 κ
∑
i,j

∑
a,b

µia,jb|Zia,jb|

= κ
3 ·
(∑

t

wt · 1
(kq)2

∑
i,j∈St

∑
a,b

|zia,jb|

+
∑
ij

didj · 1
q2

∑
ab

|zia,jb|

+
∑
i

di · 1
q

∑
a

|zia,ia|
)
.

The last bound implies the statement of Lemma 3.7
since κ = poly(kq/δ).

Proof of Lemma A.4. It is easy to check that we
can write every matrix Y ∈ Y as a sum Y =
λ1Y

(1)+λ2Y
(2)+λ3Y

(3) such that the multipliers satisfy
λ1, λ2, λ3 = poly(kq/δ) and

– the matrix Y (1) has the form Y (1) =
∑
t wtYt,

where Yt ∈MSt×Σ and ‖Yt‖1 6 C,

– the matrix Y (2) has the form d · dT ? S (for the
notation, see CSP-Oracle in §3.2),

– the matrix Y (3) has the form D−1/2diag(s)D−1/2.

Let us verify that each of these three matri-
ces Y (1), Y (2), Y (3) satisfy the bound of the lemma.

Since ‖Yt‖1 6 C for every t ∈ [m], we have∣∣∣Y (1)
ia,jb

∣∣∣ 6 ∑
t : St3i,j

wt‖Yt‖∞ 6 C
∑

t : St3i,j
wt = O(kq/δ)2µia,jb .

Since S is a sign matrix, we have∣∣∣Y (2)
ia,jb

∣∣∣ 6 didj = O(q2)µia,jb .

Since s is a sign vector and Y (3) is diagonal,∣∣∣Y (3)
ia,jb

∣∣∣ 6 diI{i=j, a=b} = O(q)µia,jb .

We can conclude that the statement of the lemma holds
for the every matrix Y ∈ Y.

We observe that Lemma A.4 and Lemma 3.7 easily
imply Lemma 3.7.
Proof of Lemma 3.7. Let X ∈ ∆D and Y ∈ Y. Then,

X • Y 6 κ
∑
i,j

∑
a,b

µia,jb|Xia,jb| (using Lemma A.4)

6 κ
∑
i,j

∑
a,b

µia,jb
1
2 (|Xia,ia|+ |Xjb,jb|)

= κ
∑
i

di · 1
q

∑
a

Xia,ia = κ/q ·D •X = κ/q .

We can conclude that ρ 6 κ/q = poly(kq/δ), because

ρ = sup
Y ∈Y

sup
X∈∆D

|X • Y | 6 κ/q .

	Introduction
	Results.
	Techniques.

	Preliminaries
	Matrix Multiplicative Weights Bounds.
	Semidefinite Feasibility Problems.
	Constraint Satisfaction Problems.

	SDP Algorithm for CSPs
	A Local Linear Program.
	Separation Oracle.
	Robustness of the Separation Oracle.
	Putting things together.

	References
	Appendix
	Dual of the Local Linear Program
	Robust Separation Oracle.
	Robustness of CSP-Oracle.

