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Abstract

We develop a framework for proving approximation limits of polynomial-size linear pro-
grams from lower bounds on the nonnegative ranks of suitably defined matrices. This frame-
work yields unconditional impossibility results that are applicable to any linear program as
opposed to only programs generated by hierarchies. Using our framework, we prove that
O(n1/2−ε)-approximations for CLIQUE require linear programs of size 2nΩ(ε) . This lower bound
applies to linear programs using a certain encoding of CLIQUE as a linear optimization prob-
lem. Moreover, we establish a similar result for approximations of semidefinite programs by
linear programs.

Our main technical ingredient is a quantitative improvement of Razborov’s rectangle cor-
ruption lemma (1992) for the high error regime, which gives strong lower bounds on the non-
negative rank of shifts of the unique disjointness matrix.

1 Introduction
1.1 Context
Linear programs (LPs) play a central role in the design of approximation algorithms, see, e.g.,
[Vazirani, 2001, Williamson and Shmoys, 2011, Lau et al., 2011]. Therefore, understanding the
limitations of LPs as tools for designing approximation algorithms is an important question.

The first generation of results studied the limitations of specific LPs by seeking to determine
their integrality gaps. The second generation of results, pioneered by Arora et al. [2002], studied
the limitations of structured LPs such as those generated by lift-and-project procedures or hierarchies
(e.g., Sherali and Adams [1990] and Lovász and Schrijver [1991]). See the previous work section
below for a more detailed account of the relevant literature.

In this work, we start a third generation of results that apply to any LP for a given problem. For
example, our lower bounds address the following question: Is there a polynomial-size linear pro-
gramming relaxation LPn for CLIQUE that achieves a nΘ(1)-approximation for all graphs with at
most n vertices? We develop a framework for reducing these kind of questions to lower bounds on
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the nonnegative rank of certain matrices obtained from a linear encoding of the problem consid-
ered. Thenwe prove lower bounds on the nonnegative rank of the matrices for CLIQUE. Although
we mainly focus on LPs, our framework readily generalizes to semidefinite programs (SDPs).
Linear Encodings We consider combinatorial optimization problems1 that can be encoded in a
linear fashion by specifying a set of feasible solutions represented as binary vectors and a set of
admissible (linear) objective functions represented by their coefficient vectors. An instance of a
given linear encoding is specified by a dimension d and admissible objective function w ∈ Rd.
Solving the instance means finding a feasible solution x ∈ {0, 1}d such that wᵀx = ∑d

i=1 wixi is
minimum (or maximum). The optimum value of the instance is thus the minimum (or maximum)
value of wᵀx for a feasible x ∈ {0, 1}d.

We require that every instance of the problem can be mapped to an instance of the linear en-
coding in such a way that feasible solutions to an instance of the problem can be converted in
polynomial time to feasible solutions to the corresponding instance of the linear encoding with-
out deteriorating their objective function values, and vice-versa. In this case, we say that a linear
encoding faithfully encodes the problem. For graph problems such as the maximum clique prob-
lem (CLIQUE), such a linear encoding does not allow the set of feasible solutions to depend on
the input graph, which is encoded solely in the objective function. Constraints are only allowed to
depend on the size n of the ground set.

Example 1 (Linear encoding ofmetric TSP). With the natural linear encoding of themetric traveling
salesman problem (metric TSP) the feasible solutions are the characteristic vectors (or incidence
vectors) of tours of the complete graph over [n] := {1, 2, . . . , n} for some n > 3, and the admissible
objective functions are all nonnegative vectors w = (wij) such that wik 6 wij + wjk for all distinct i,
j and k in [n]. All vectors are encoded in Rd, where d = (n

2).

In general, a linear encoding determines two nested convex sets P ⊆ Q in Rd for each d. The
set P is the convex hull of the feasible solutions of dimension d, thus P is a 0/1-polytope2. In case
of a minimization problem, the set Q is defined by all inequalities of the form wᵀx > δ satisfied by
P where w is an admissible objective function of dimension d, and δ is chosen as large as possible.
For a maximization problem, the inequalities are of the form wᵀx 6 δ and δ is chosen as small as
possible. In other words, Q is the tightest relaxation of P with the given facet coefficients.
(Approximate) Extended Formulations We begin by illustrating the concept on our former ex-
ample.

Example 2 (Approximate extended formulation of metric TSP). We return to Example 1. It is
known that the Held-Karp relaxation K of the metric TSP has integrality gap at most 3/2 (see Held
and Karp [1970], Wolsey [1980]). In geometric terms, this means that P ⊆ K ⊆ 2/3 · Q. Although
K is defined by an exponential number of inequalities, it is known that it can be reformulated with
a polynomial number of constraints by adding a polynomial number of variables, see, e.g., Carr
et al. [2009]. That is, the Held-Karp relaxation K has a polynomial-size extended formulation.

Formally, an extended formulation (EF) of a polyhedron K ⊆ Rd is a linear system in variables
(x, y) ∈ Rd+k such that, for every x ∈ Rd, we have x ∈ K if and only if there exists y ∈ Rk such that
(x, y) is a solution to the system. The size of an EF is the number of inequalities in the system, thus
the variables and equalities are not counted. This turns out to be the right definition of size. It can
be shown that an EF can always be brought into slack form Ex + Fy = g, y > 0 without increasing

1We assume some familiarity with combinatorial optimization. See, e.g., Schrijver [2003].
2We also assume some familiarity with (convex) polytopes and polyhedra, see the standard reference Ziegler [1995].
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its size. We will mainly consider EFs in slack form. For these, the size equals the number of extra
variables.

The extension complexity xc(K) of the polyhedron K is defined as the minimum size of an EF of
K. Most of the LP relaxations that appear in the context of approximation algorithms actually have
polynomial extension complexity. This is in particular the case of the relaxations obtained from
an initial polynomial size relaxation at a bounded level of any of the common linear programming
hierarchies.

Let ρ > 1. Then we say that Ex + Fy = g, y > 0 is a ρ-approximate EF of a given maximization
problem, w.r.t. a given linear encoding of this problem, if the maximum value of wᵀx on K := {x ∈
Rd | ∃y : Ex + Fy = g, y > 0} is at least the optimum value for every w ∈ Rd and at most ρ times
the optimum value for every admissible w ∈ Rd. Geometrically, this is equivalent to P ⊆ K ⊆ ρQ.
For minimization problems, the definitions are similar. In this case, we have P ⊆ K ⊆ ρ−1Q.
Nonnegative Factorizations A rank-r nonnegative factorization of an m× n matrix M is a decom-
position of M as a product M = TU of nonnegative matrices T and U of sizes m × r and r × n,
respectively. The nonnegative rank rank+(M) of M is the minimum rank r of nonnegative factoriza-
tions of M. In case M is zero, we let rank+(M) = 0. It is quite useful to notice that the nonnegative
rank of M is also the minimum number of nonnegative rank-1 matrices whose sum is M. From
this, we see immediately that the nonnegative rank of M is at least the nonnegative rank of any of
its submatrices.

The factorization theorem of Yannakakis [1991] (see [Yannakakis, 1988] for the conference ver-
sion) states that extension complexity of a polytope K is precisely the nonnegative rank of any of
its slack matrices. If K is the convex hull of {v1, . . . , vn} ⊆ Rd and the set of solutions to A1x 6 b1,
. . . , Amx 6 bm then the slack matrix of K with respect to these outer and inner descriptions is
the m × n nonnegative matrix S with entries Sij := bi − Aivj. Yannakakis’ theorem states that
xc(K) = rank+(S) for every polytope K and every slackmatrix S of K. This theorem can be straight-
forwardly generalized to the case where K is an unbounded polyhedron, see, e.g., Conforti et al.
[2010], or Theorem 1 below.
The Link to Communication Complexity Yannakakis’ factorization theorem initiated an inter-
play between the extension complexity of polytopes and (classical) communication complexity.3
The relevant concept here is randomized communication protocol with private randomness and
nonnegative outputs computing a (nonnegative) function M : X × Y → R+ in expectation. For the
sake of simplicity, we call this a protocol computing M in expectation.

Faenza et al. [2011] show that, considering M as amatrix, theminimumcomplexity of a protocol
computing M in expectation equals log(rank+(M)) + Θ(1). (This was proved independently by
Zhang [2012].) Thus proving bounds on the nonnegative rank of M amounts to proving bounds
on the required amount of communication for computing M in expectation.

It is not hard to see that this last quantity is bounded from below by the nondeterministic com-
munication complexity of the support of M because every protocol computing M in expectation
can be turned into a nondeterministic protocol for the support of M. Equivalently, the nonnega-
tive rank of the matrix M is bounded from below by the minimum number of 1-monochromatic
rectangles covering the support of M.
(Unique) Disjointness In the disjointness problem (DISJ), both Alice and Bob receive a subset of
[n]. They have to determine whether the two subsets are disjoint. The disjointness problem is
central to communication complexity, see Chattopadhyay and Pitassi [2010] for a survey.

3We assume some familiarity with communication complexity. See Kushilevitz and Nisan [1997].
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A related problem that captures the hardness of the disjointness problem is the unique disjoint-
ness problem (UDISJ), that is, the promise version of the disjointness problemwhere the two subsets
are guaranteed to have at most one element in common. Denoting the binary encoding of the sets
of Alice and Bob by a, b ∈ {0, 1}n, respectively, this amounts to computing the Boolean function
UDISJ(a, b) := 1− aᵀb on the set of pairs (a, b) ∈ {0, 1}n × {0, 1}n with aᵀb ∈ {0, 1}. Viewing it as
a partial 2n × 2n matrix, we call UDISJ the unique disjointness matrix.

It is known that the communication complexity of UDISJ is Ω(n) bits for deterministic, non-
deterministic and even randomized communication protocols [Kalyanasundaram and Schnitger,
1992, Razborov, 1992, Bar-Yossef et al., 2004]. One consequence of this is that the nonnegative
rank of anymatrix obtained from UDISJ by filling arbitrarily the blank entries (for pairs (a, b)with
aᵀb > 1) and perhaps adding rows and/or columns is still 2Ω(n). Indeed, the support of the result-
ing matrix has Ω(n) nondeterministic communication complexity because it contains UDISJ.

1.2 Previous Work
In a recent paper Fiorini et al. [2012] proved strong lower bounds on the size of LPs expressing
the traveling salesman problem (TSP), or more precisely on the size of EFs of the TSP polytope.
Their proof works by embedding the UDISJ in a slack matrix of the TSP polytope of the complete
graph on Θ(n4) vertices (a more recent version of this paper uses Θ(n2) vertices). This solved a
question left open in Yannakakis [1991]. We use a similar approach for approximate EFs, which
requires lower bounds on the nonnegative rank of partial matrices obtained from the UDISJ matrix
by adding a positive offset to all the entries.

Our results are closely related to previous work in communication complexity for the (unique)
disjointness problem and related problems. Lower bounds of Ω(n) on the randomized, bounded
error communication complexity of disjointness were established in Kalyanasundaram and Schnit-
ger [1992]. In Razborov [1992] the distributional complexity of unique disjointness problem was
analyzed, which in particular implies the result of Kalyanasundaram and Schnitger [1992]. The
main tool here is Razborov’s rectangle corruption lemma showing that in every large rectangle,
the number of 0-entries is proportional to the number of 1-entries. This ensures that monochro-
matic 1-rectangles have to be small and therefore a large number is needed to cover all 1-entries; a
lower bound for the nondeterministic communication complexity. It is precisely this lemma that
was used in Fiorini et al. [2012] to establish lower bounds on the extension complexity of the cut
polytope, the stable set polytope, and the TSP polytope. The most recent proof that the random-
ized, bounded error communication complexity of DISJ is Ω(n) is due to Bar-Yossef et al. [2004]
and is based on information theoretic arguments. This leads to a lower bound for randomized com-
munication within a high-error regime, that is, when the error probability is close to 1/2. Here we
derive a strong generalization dealing with shifts for approximate EFs and we recover the high-
error regime bound.

There has been extensivework on LP and SDP hierarchies/relaxations and their limitations; we
will be only able to list a few here. In Charikar et al. [2009], strong lower bounds (of 2− ε) on the
integrality gap for nε rounds of the Sherali-Adams hierarchy when applied to (natural relaxations
of) VERTEX COVER, Max CUT, SPARSEST CUT have been been established via embeddings into
`2; see also Charikar et al. [2010] for limits and tradeoffs in metric embeddings. For integrality
gaps of linear (and also SDP) relaxations for the KNAPSACK problem see Karlin et al. [2011]. A
nice overview of the differences and similarities of the Sherali-Adams, the Lovász-Schrijver and
the Lasserre hierarchies/relaxations can be found in Laurent [2003]. Similar to the level of a hi-
erarchy, we have the notion of rank for the Lovász-Schrijver relaxation and rank correspond to a
similar complexity measure as the level. The rank is the minimum number of application of the
Lovász-Schrijver operator N until we obtain the integral hull of the polytope under consideration.
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Rank lower bounds of n for Lovász-Schrijver relaxations of CLIQUE have been obtained in Cook
and Dash [2001]; a similar result for Sherali-Adams hierarchy can be found in Laurent [2003]. In
Singh and Talwar [2010] integrality gaps, after adding few rounds of Chvátal-Gomory cuts, have
been studied for problems including k-CSP, Max CUT, VERTEX COVER, and UNIQUE LABEL
COVER showing that in some cases (e.g., k-CSP) the gap can be significantly reduced whereas in
most other cases the gap remains high. In the context of SDP relaxations, in particular formula-
tions derived from the Lovász-Schrijver N+ hierarchies (see Lovász and Schrijver [1991]) and the
Lasserre hierarchies (see Lasserre [2002]). For example, in Arora et al. [2009] an O(

√
log n) up-

per bound on a suitable SDP relaxation of the SPARSEST CUT problem was obtained. For lower
bounds in terms of rank, see e.g., Schoenebeck [2008] for the k-CSP in the Lasserre hierarchy or
Schoenebeck et al. [2007] for VERTEX COVER in the semidefinite Lovász-Schrijver hierarchy. Mo-
tivated by the Unique Games Conjecture, several works studied upper and lower bounds for SDP
hierarchy relaxations of Unique Games (see for example, Guruswami and Sinop [2011], Barak et al.
[2011, 2012b,a]). In Fiorini et al. [2012] a characterization of semidefinite EFs via one-way quantum
communication complexity is established.

Approximate EFs have been studied before, for specific problems, e.g., KNAPSACK in Bien-
stock [2008], or as a general tool, see Vyve and Wolsey [2006]. The idea of considering a pair P, Q
as we do here first appeared in Pashkovich [2012] and similar ideas appeared earlier in Gillis and
Glineur [2010]. For recent results on computation of nonnegative rank see Arora et al. [2012].

1.3 Contribution
The contribution of the present paper is threefold.

(i) We develop a framework for proving lower bounds on the sizes of approximate EFs. Through
a generalization of Yannakakis’ factorization theorem, we characterize the minimum size of
a ρ-approximate EF as the nonnegative rank of any slack matrix of a pair of nested polyhedra.
Thuswe reduce the task of proving approximation limits for LPs to the task of obtaining lower
bounds on the nonnegative ranks of associated matrices. Typically, these matrices have no
zeros, which renders it impossible to use nondeterministic communication complexity. We
emphasize the fact that the results obtained within our framework are unconditional. In
particular, they do not rely on P 6= NP.

(ii) We extend Razborov’s rectangle corruption lemma to deal with shifts of the UDISJ matrix.
As a consequence, we prove that the nonnegative rank of anymatrix obtained from theUDISJ
matrix by adding a constant offset to every entry is still 2Ω(n). Moreover, the nonnegative rank
is still 2Ω(n2ε) when the offset is at most n1/2−ε. To our knowledge, these are the first strong
lower bounds on the nonnegative rank of matrices that contain no zeros. (Furthermore, the
relative difference between any two entries of some of our shifted UDISJ matrices is tiny.)
Our extension of Razborov’s lemma allow us to recover known lower bounds for DISJ in the
high-error regime of Bar-Yossef et al. [2004].

(iii) We obtain a strong hardness result for CLIQUE w.r.t. a natural linear encoding of CLIQUE.
From the results described above, we prove that the size of every O(n1/2−ε)-approximate EF
for CLIQUE is 2Ω(n2ε). Finally, we observe that the same bounds hold for approximations of
SDPs by LPs. This suggests that SDP-based approximation algorithms can be significantly
stronger than LP-based approximation algorithms. The inapproximability of SDPs by LPs
has some interesting consequences. In particular we cannot expect to convert SDP-based ap-
proximation algorithms into LP-based ones by approximating the PSD-cone via linear pro-
gramming.
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We point out that our framework readily generalizes to SDPs by replacing nonnegative rank
with PSD rank (see Gouveia et al. [2011] or Fiorini et al. [2012] for a definition of the PSD rank).

Finally, we report that the results of this paper have inspired further research. In particular,
Braverman andMoitra [2013] improved our lower bound on the nonnegative rank of shifted UDISJ
matrices and obtain super-polynomial lower bounds for shifts up to O(n1−ε), hence matching the
algorithmic hardness of approximation for CLIQUE. To achieve this, they pioneered information-
theoretic methods for proving lower bounds on the nonnegative rank. An alternative informa-
tion theoretic approach for lower bounding the nonnegative rank which simplifies and slightly
improves the results in Braverman and Moitra [2013] has been presented in Braun and Pokutta
[2013]. The latter also establishes that the hard pair that we present here has high average case and
adversarial approximate extension complexity.

1.4 Outline
We begin in Section 2 by setting up our framework for studying approximate extended formula-
tions of combinatorial optimization problems. Then we extend Razborov’s rectangle corruption
lemma in Section 3 and use this to prove strong lower bounds on the nonnegative rank of shifts of
the UDISJ matrix. Finally, we draw consequences for CLIQUE and approximations of SDPs by LPs
in Section 4.

2 Framework for Approximation Limits of LPs
In this section we establish our framework for studying approximation limits of LPs. First, we
define in details the concepts of linear encodings and approximate extended formulations. Second,
we prove a factorization theorem for pairs of nested polyhedra reducing existential questions on
approximate EFs to the computation of nonnegative ranks of certain slack matrices.

2.1 Preliminaries
A (convex) polyhedron is a set P ⊆ Rd that is the intersection of a finite collection of closed halfs-
paces. In other words, P is a polyhedron if and only if P is the set of solutions of a finite system of
linear inequalities and possibly equalities. (Note that every equality can be represented by a pair
of inequalities.) Equivalently, a set P ⊆ Rd is a polyhedron if and only if P is the Minkowski sum
of the convex hull conv (V) of a finite set V of points and the conical hull cone (R) of a finite set R
of vectors, that is, P = conv (V) + cone (R).

Let P ⊆ Rd be a polyhedron. The dimension of P is the dimension of its affine hull aff(P). A
face of P is a subset F := {x ∈ P | wᵀx = δ} of P such that P satisfies the inequality wᵀx 6 δ. Note
that face F is again a polyhedron. A vertex is a face of dimension 0, i.e., a point. A facet is a face of
dimension one less than P. The inequality wᵀx 6 δ is called facet-defining if the face F it defines is
a facet. The recession cone rec (P) of P is the set of directions v ∈ Rd such that, for a point p in P, all
points p + λv where λ > 0 belong to P. The recession cone of P does not depend on the base point
p, and is again a polyhedron (even more, it is a polyhedral cone). The elements of the recession
cone are sometimes called rays.

A (convex) polytope P ⊆ Rd is a bounded polyhedron. Equivalently, P is a polytope if and only
if P is the convex hull conv (V) of a finite set V of points. Let P ⊆ Rd be a polytope. Every (finite
or infinite) set V such that P = conv (V) contains all the vertices of P. Letting vert(P) denote the
vertex set of P, thenwe have P = conv (vert(P)). Every (finite) system describing P contains all the
facet-defining inequalities of P, up to scaling by positive numbers and adding equalities satisfied
by all points of P. Conversely, a linear description of P can be obtained by picking one defining
inequality per facet and adding a system of equalities describing aff(P). A 0/1-polytope in Rd is
simply the convex hull of a subset of {0, 1}d.
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2.2 Linear Encodings of Problems and Approximate EFs
A linear encoding of a (combinatorial optimization) problem is a pair (L,O) where L ⊆ {0, 1}∗ is
the set of feasible solutions to the problem and O ⊆ R∗ is the set of admissible objective functions. An
instance of the linear encoding is a pair (d, w)where d is a positive integer and w ∈ O∩Rd. Solving
the instance (d, w) means finding x ∈ L ∩ {0, 1}d such that wᵀx is either maximum or minimum,
according to the type of problem under consideration.

For every fixed dimension d, a linear encoding (L,O) naturally defines a pair of nested convex
sets P ⊆ Q where

P := conv
(
{x ∈ {0, 1}d | x ∈ L}

)
, and

Q := {x ∈ Rd | ∀w ∈ O ∩Rd : wᵀx 6 max{wᵀx | x ∈ P}}

if the goal is to maximize and Q := {x ∈ Rd | ∀w ∈ O ∩Rd : wᵀx > min{wᵀx | x ∈ P}} if the
goal is to minimize. Intuitively, the vertices of P encode the feasible solutions of the problem under
consideration and the defining inequalities of Q encode the admissible linear objective functions.
Notice that P is always a 0/1-polytope but Q might be unbounded and, in some pathological cases,
nonpolyhedral. Below, we will mostly consider the case where Q is polyhedral, that is, defined by
a finite number of “interesting” inequalities.

Given a linear encoding (L,O) of a maximization problem, and ρ > 1, a ρ-approximate extended
formulation (EF) is an extended formulation Ex + Fy = g, y > 0 with (x, y) ∈ Rd+r such that

max{wᵀx | Ex + Fy = g, y > 0} > max{wᵀx | x ∈ P} for all w ∈ Rd and
max{wᵀx | Ex + Fy = g, y > 0} 6 ρ max{wᵀx | x ∈ P} for all w ∈ O ∩Rd.

Letting K := {x ∈ Rd | ∃y ∈ Rr : Ex + Fy = g, y > 0}, we see that this is equivalent to
P ⊆ K ⊆ ρQ. For a minimization problem, we require

min{wᵀx | Ex + Fy = g, y > 0} 6 min{wᵀx | x ∈ P} for all w ∈ Rd and
min{wᵀx | Ex + Fy = g, y > 0} > ρ−1 min{wᵀx | x ∈ P} for all w ∈ O ∩Rd.

This is equivalent to P ⊆ K ⊆ ρ−1Q.
We require the following faithfulness condition: every instance of the problem can be mapped to

an instance of the linear encoding in such away that feasible solutions to an instance of the problem
can be converted in polynomial time to feasible solutions to the corresponding instance of the linear
encoding without deteriorating their objective function values, and vice-versa. Roughly speaking,
we ask that each instance of the problem can be encoded as an instance of the linear encoding.

Example 3 (Max k-SAT). Consider the maximum k-SAT problem (Max k-SAT), where k is constant.
Letting u1, . . . , un denote the variables of a Max k-SAT instance, we encode the problem in di-
mension d = Θ(nk). For each nonempty clause C of size at most k, we introduce a variable xC.
Collectively, these variables define a point x ∈ Rd. Given a truth assignment, we set xC to 1 if C is
satisfied and otherwise we set xC to 0. Letting n vary, this defines a language L ⊆ {0, 1}∗. We let
O := {0, 1}∗.

The pair (L,O) defines a linear encoding ofMax k-SAT because each instance ofMax k-SAT can
be encoded as an instance of (L,O). More precisely, to any given set of clauses over n variables,
we can associate a dimension d = Θ(nk) and weight vector w ∈ {0, 1}d such that maximizing
∑ wCxC for x ∈ L ∩ {0, 1}d corresponds to finding a truth assignment that maximizes the number
of satisfied clauses.
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Finally, we remark that the EF defined by the inequalities 0 6 xC 6 1 and xC 6 ∑ui∈C x{ui} +

∑ūi∈C(1− x{ui}) for all clauses C is a polynomial-size 4/3-approximate EF forMax k-SAT, as follows
from Goemans and Williamson [1994].

2.3 Factorization Theorem for Pairs of Nested Polyhedra
Let P and Q be polyhedra with P ⊆ Q ⊆ Rd. An extended formulation (EF) of the pair P, Q is a
system Ex + Fy = g, y > 0 defining a polyhedron K := {x ∈ Rd | Ex + Fy = g, y > 0} such that
P ⊆ K ⊆ Q. We denote by xc(P, Q) the minimum size of an EF of the pair P, Q.

Now consider an inner description P := conv ({v1, . . . , vn}) + cone ({r1, . . . , rk}) of P and an
outer description Q := {x ∈ Rd | Ax 6 b} of Q, where the system Ax 6 b consists ofm inequalities:
A1x 6 b1, . . . , Amx 6 bm. The slack matrix of the pair P, Q w.r.t. these inner and outer descriptions is
the m× (n + k)matrix SP,Q = [ SP,Q

vertex SP,Q
ray ] given by block decomposition into a vertex and ray part:

SP,Q
vertex(i, j) := bi − Aivj, i ∈ [m], j ∈ [n],

SP,Q
ray (i, j) := −Airj, i ∈ [k], j ∈ [n].

Our first result gives an essentially exact characterization of xc(P, Q) in terms of the nonnegative
rank of the slack matrix of the pair P, Q. It states that the minimum extension complexity xc(P, Q)
of a polyhedron sandwiched between P and Q equals the nonnegative rank of SP,Q (minus 1, in
some cases). The result readily generalizes Yannakakis’s factorization theorem [Yannakakis, 1991],
which concerns the case P = Q. A result similar to ours appeared in Pashkovich [2012].

Theorem 1. With the above notations, we have rank+(SP,Q)− 1 6 xc(P, Q) 6 rank+(SP,Q) for every
slack matrix of the pair P, Q. If the affine hull of P is not contained in Q and rec (Q) is not full-dimensional,
we have xc(P, Q) = rank+(SP,Q). In particular, this holds when P and Q are polytopes of dimension at
least 1.

Proof. First, we deal with degenerate cases. Observe that xc(P, Q) = 0 if and only if there exists
an affine subspace containing P and contained in Q, that is, if and only if the affine hull of P is
contained in Q. In this case, we have rank+(SP,Q) ∈ {0, 1}, so the theorem holds.

Now assume that the affine hull of P is not contained in Q. Then, rank+(SP,Q) > 1 because
having rank+(SP,Q) = 0 means either that SP,Q is empty, that is, m = 0 or n + k = 0, or that
SP,Q is the zero matrix. In all cases, this contradicts our assumption that the affine hull of P is not
contained in Q.

Next, let SP,Q = TU be any rank-r nonnegative factorization of SP,Q with r = rank+(SP,Q) > 1.
This factorization decomposes into blocks: SP,Q

vertex = TUvertex and SP,Q
ray = TUray. Consider the

system
Ax + Ty = b, y > 0 (1)

and the corresponding polyhedron K := {x ∈ Rd | Ax + Ty = b, y > 0}.
We verify now that P ⊆ K ⊆ Q. The inclusion K ⊆ Q simply follows from Ty > 0. For the

inclusion P ⊆ K, pick a vertex vj and observe that (x, y) = (vj, U j
vertex) satisfies (1), where U j

vertex

denotes the jth column of U, because Avj + TU j
vertex = Avj + b− Avj = b and U j > 0. Similarly,

for every ray rj we obtain a ray (rj, U j
ray) of K as Arj + TU j

ray = 0 and U j
ray > 0.

Thus we obtain that (1) is a size-r EF of the pair P, Q. Therefore, xc(P, Q) 6 rank+(SP,Q).
Finally, suppose that the system

Ex + Fy = g, y > 0 (2)
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defines a size-r EF of the pair P, Q. Let L ⊆ Rd+r denote the polyhedron defined by (2), and let
K ⊆ Rd denote the orthogonal projection of L into x-space.

Since P ⊆ K, for each point vj, there exists wj ∈ Rr
+ such that (vj, wj) ∈ L. Similarly, for each

ray rj there exists a zj ∈ Rr
+ with (rj, zj) a ray of L. Let W be the matrix with columns the wj, and

Z be the matrix with columns the zj
Since K ⊆ Q, by Farkas’s lemma, Ax 6 b can be derived from (2), i.e., A = TE, b = Tg + c

and TF > 0 for some c > 0 and T. This gives the factorizations SP,Q
vertex = (TF)W + c · 1 and

SP,Q
ray = (TF)Z, resulting in the rank-(r+ 1) nonnegative factorization SP,Q = [ TF c ] ·

[
W Z
1 0

]
. Taking

r = xc(P, Q), we find rank+(SP,Q) 6 xc(P, Q) + 1.
Finally, when rec (Q) is not full-dimensional, then c above can be chosen to be 0. This simplifies

the factorization, and yields the sharper inequality rank+(SP,Q) 6 xc(P, Q).

Let P, Q be as above and ρ > 1. Then ρQ = {x ∈ Rd | Ax 6 ρb} and the slack matrix of the
pair P, ρQ is related to the slack matrix of the pair P, Q in the following way:

SP,ρQ
vertex(i, j) = ρbi − Aivj = (ρ− 1)bi + bi − Aivj = SP,Q

ij + (ρ− 1)bi,

SP,ρQ
ray (i, j) = SP,Q

ij .

Theorem 1 directly yields the following result.

Theorem 2. Consider a maximization problem and linear encoding for this problem. Let P, Q ⊆ Rd

be the pair of polyhedra associated with the linear encoding, and let ρ > 1. Consider any slack matrix
SP,Q for the pair P, Q and the corresponding slack matrix SP,ρQ for the pair P, ρQ. Then the minimum
size of a ρ-approximate EF of the problem, w.r.t. the considered linear encoding, is rank+(SP,ρQ) + Θ(1),
where the constant is 0 or 1. For a minimization problem, the minimum size of a ρ-approximate EF is
rank+(SP,ρ−1Q) + Θ(1).

Fixing ρ > 1, Theorem2 characterizes theminimumnumber of inequalities in any LPproviding
a ρ-approximation for the problem under consideration. We point out that the theorem directly
generalizes to SDPs, by replacing nonnegative rank by PSD rank [Gouveia et al., 2011, Fiorini et al.,
2012]. Here, we focus on LPs and nonnegative rank. As a matter of fact, strong lower bounds on
the PSD rank seem to be currently lacking.

2.4 A Problem with no Polynomial-Size Approximate EF
We conclude this section with an example showing the necessity to restrict the set of admissible
objective functions rather than allowing every w ∈ R∗ (that is P = Q).

Let Kn = (Vn, En) denote the n-vertex complete graph. For a set X of vertices of Kn, we let δ(X)
denote the set of edges of Kn with one endpoint in X and the other in its complement X̄. This set
δ(X) is known as the cut defined by X. For a subset F of edges of Kn, we let χF ∈ REn denote the
characteristic vector (or incidence vector) of F, with χF

e = 1 if e ∈ F and χF
e = 0 otherwise. The cut

polytope CUT(n) is defined as the convex hull of the characteristic vectors of all cuts in the complete
graph Kn = (Vn, En). That is,

CUT(n) := conv
(
{χδ(X) ∈ REn | X ⊆ Vn}

)
.

A related object is the cut cone, defined as the cone generated by the cut-vectors χδ(X):

CUT-CONE(n) := cone
(
{χδ(X) ∈ REn | X ⊆ Vn}

)
.
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Consider the maximum cut problem (Max CUT) with arbitrary weights, and its usual linear
encoding. With this encoding we have P = Q = CUT(n). Our next result states that this problem
has no ρ-approximate EF, whatever ρ > 1 is. Intuitively, this phenomenon stems from the fact that,
because 0 is a vertex of the cut polytope, every approximate EF necessarily ‘captures’ all facets of
the cut polytope incident to 0 (see Figure 1). These facets define the cut cone, which turns out
to have high extension complexity. Although this follows rather easily from ideas of Fiorini et al.
[2012], we include a proof here for completeness.

00

CUT(3)

1.5 CUT(3)

Figure 1: CUT(3) and a dilate ρ CUT(3) for ρ = 1.5.

Proposition 3. For every ρ > 1, every ρ-approximate EF of the Max CUT problem with arbitrary weights
has 2Ω(n) size. More precisely, disregarding the value of ρ > 1, we have xc(CUT(n), ρ CUT(n)) = 2Ω(n).

Proof. Let Ex + Fy = g, y > 0 denote a minimum size ρ-approximate EF of CUT(n). We claim that

Ex + Fy− λg = 0, y > 0, λ > 0 (3)

is an EF of the cut cone. Let K be the polyhedron obtained by projecting the set of solutions of
(3) into x-space. Clearly, K is a cone containing all the cut-vectors χδ(X), from which we get that
CUT-CONE(n) ⊆ K. Now take any point (x, y, λ) satisfying (3). If λ = 0 then necessarily x = 0
because Ex + Fy = 0, y > 0 defines the recession cone of a polyhedron that projects into ρ CUT(n),
which is bounded. In this case we have x = 0 ∈ CUT-CONE(n). Assume that λ > 0. Then
Eλ−1x + Fλ−1y = g and λ−1y > 0 which implies that λ−1x is in ρ CUT(n). Thus ρ−1λ−1x is in
CUT(n) and x is thus a positive combination of cut-vectors, hence x ∈ CUT-CONE(n). This yields
K ⊆ CUT-CONE(n). In conclusion, K = CUT-CONE(n) and (3) is an EF of the cut cone. The size
of this EF is at most 2r + (n

2), where r denotes the size of the given ρ-approximate EF of CUT(n).
Thus xc(CUT-CONE(n)) 6 2r + (n

2).
By using the correlation mapping (see [Laurent and Deza, 1997, p. 55]), the cut cone has the

same extension complexity as its corresponding correlation cone, defined as

COR-CONE(n− 1) := cone
({(

b0

b

)(
b0

b

)ᵀ ∣∣∣∣ b0 ∈ {0, 1}, b ∈ {0, 1}n−2
})

.

We claim that the unique disjointness matrix on [n − 2] can be embedded in a slack matrix of
COR-CONE(n − 1). To prove this, consider the (n − 1) × (n − 1) rank-1 positive semidefinite
matrices

Ta :=
(
−1
a

)(
−1
a

)ᵀ
and Ub :=

(
1
b

)(
1
b

)ᵀ
(4)
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where a, b ∈ {0, 1}n−2. The Frobenius inner product 〈Ta, z〉 > 0 of Ta with any correlation matrix
z = (b0

b )(
b0
b )
ᵀ
is nonnegative because both matrices are positive semidefinite. Thus 〈Ta, z〉 > 0 is

valid for all points z ∈ COR-CONE(n− 1), for all a ∈ {0, 1}n−2. Moreover, 〈Ta, Ub〉 = (1− aᵀb)2

for all a, b ∈ {0, 1}n−2 and thus 〈Ta, Ub〉 = UDISJ(a, b) provided aᵀb ∈ {0, 1}.
From what precedes, the slack of correlation matrix Ub with respect to the valid inequality

〈Ta, z〉 > 0 is UDISJ(a, b) provided aᵀb ∈ {0, 1}. Therefore, COR-CONE(n− 1) has a slack matrix
that contains UDISJ on [n− 2]. Because the nonnegative rank of any matrix containing UDISJ is
2Ω(n) (this follows from [Razborov, 1992], see [Fiorini et al., 2012, Theorem 1]), we conclude that
the nonnegative rank of some slack matrix of COR-CONE(n − 1) is 2Ω(n). From the Theorem 1
applied to P = Q = COR-CONE(n− 1), it follows that xc(COR-CONE(n− 1)) = 2Ω(n). Thus we
get

2r +
(

n
2

)
> xc(CUT-CONE(n)) = xc(COR-CONE(n− 1)) = 2Ω(n)

from which we obtain r > 1
2 2Ω(n) − (n

2) = 2Ω(n). The result then follows immediately.

3 Extension of Razborov’s Lemma and Shifts of Unique Disjointness
In the first subsection we generalize Razborov’s famous lemma on the disjointness problem (see
Razborov [1992] or Kushilevitz and Nisan [1997, Lemma 4.49] for the original version). In the next
subsection we apply it to shift the UDISJ matrix without significantly decreasing its nonnegative
rank, which will be used in later sections to obtain lower bounds on approximate extended formu-
lations.

The main improvements to Razborov’s lemma are threefold: (i) the dependence in the error
parameter ε is made explicit; (ii) better analytical estimations are employed to improve overall
strength of the statement; (iii) probabilities are generalized to expected values to homogenize the
proof and allow arbitrary nonnegative rank-1 matrices instead of rectangles, which is more natural
for nonnegative rank lower bounds.
3.1 Extension of Razborov’s Rectangle Corruption Lemma
Suppose that n ≡ 3 (mod 4) and let

` :=
n + 1

4
.

Wedefine the followingdistribution µ onpairs (a, b) of subsets of [n]. Weflip a biased coin andwith
probability 1/4 and choose (a, b) uniformly among the pairs of `-subsets intersecting in exactly one
element; with probability 3/4, we choose (a, b) uniformly among the pairs of disjoint `-subsets.

Let A denote the event that a and b are disjoint `-subsets, and B denote the event that a and b
are `-subsets intersecting in exactly one element (B for “Barely intersecting”). We have

A = {(a, b) | |a ∩ b| = 0, |a| = |b| = `}, and B = {(a, b) | |a ∩ b| = 1, |a| = |b| = `}.

We see that
P [A] =

3
4

, P [B] =
1
4

and the conditional distribution of µ given either A or B is uniform.

Lemma 4. Let n, `, µ, A and B be as above. For every nonnegative functions f and g defined on 2[n] × 2[n]

we introduce a random variable X such that X(a, b) := f (a)g(b). Then for every 0 < ε < 1:

(1− ε)E [X | A]−E [X | B] 6 ‖X � (A ∪ B)‖∞ 2−
ε2

16 ln 2 `+O(log `), (5)

where the constant in the O(log `) is absolute, and X � (A ∪ B) denotes the restriction of X to A ∪ B.
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We note that the lemma holds for all nonnegative functions f and g if and only if it holds for
all binary functions f and g. In this case X is the indicator4 of a rectangle R, that is X = IR, and (5)
becomes

4
3
(1− ε)P [R ∩ A]− 4 P [R ∩ B] 6 2−

ε2
16 ln 2 `+O(log `),

which is a strengthened version of Razborov’s original lemma. In the proof below, whenever this
helps the intuition, the reader can assume that X is the indicator of a rectangle.

Our proof is inspired by the version in Kushilevitz andNisan [1997, Lemma 4.49] andwe adopt
similar notations.

Proof of Lemma 4. The proof is in four main steps.

Step 1: Redefinition of distribution µ and rewriting of E [X | A] and E [X | B]. First, we redefine the
distribution µ in an alternative fashion. Let T = (T1, T2, {i}) be a uniformly chosen partition of
[n] into two subsets T1, T2 with 2` − 1 elements and one singleton {i}. Given T we choose `-
subsets a and b independently in T1 ∪ {i} and T2 ∪ {i}, respectively. We flip a fair coin to decide
whether i is an element of a. With probability 1/2, we select a as a uniform random `-subset of
T1 ∪ {i} containing {i}. With probability 1/2, we choose a as a uniform random `-subset of T1. We
choose b similarly by using T2 instead of T1. Note that the probability of B under this distribution
is P [B] = P [i ∈ a, i ∈ b] = (1/2)2 = 1/4. For A we get P [A] = 1− P [A] = 1− 1/4 = 3/4.
Hence, by symmetry reasons, the conditional distribution is uniform given either A or B, hence
the marginal distribution on pairs (a, b) is exactly µ.

We begin by rewriting E [X | B] and then E [X | A] in terms of the following functions of T:

Row0(T) := E [ f (a) | T, i /∈ a] , Row1(T) := E [ f (a) | T, i ∈ a] ,
Col0(T) := E [g(b) | T, i /∈ b] , Col1(T) := E [g(b) | T, i ∈ b] .

We note the following nice interpretation of Row0(T) + Row1(T) and Col0(T) + Col1(T), that
we will use at the end of the proof:

E [ f (a) | T] = E [ f (a) | T, i ∈ a]︸ ︷︷ ︸
Row1(T)

·P [i ∈ a | T]︸ ︷︷ ︸
1/2

+E [ f (a) | T, i /∈ a]︸ ︷︷ ︸
Row0(T)

·P [i /∈ a | T]︸ ︷︷ ︸
1/2

=
Row0(T) + Row1(T)

2
,

(6)

E [g(b) | T] = Col0(T) + Col1(T)
2

.

Note that: (i) the distribution of (a, b) conditioned on a given T is a product distribution (this
local independence property is the main reason why we reinterpret the distribution µ); (ii) the
marginal distributions of a conditioned on (T, i ∈ a, i ∈ b) and (T, i ∈ a) are the same (and similarly
for b, we can remove the condition i ∈ a). From these facts, we get

E [X | B] = E [ f (a)g(b) | i ∈ a, i ∈ b]
= E [E [ f (a)g(b) | T, i ∈ a, i ∈ b]]
= E [E [ f (a) | T, i ∈ a, i ∈ b]E [g(b) | T, i ∈ a, i ∈ b]]
= E [E [ f (a) | T, i ∈ a]E [g(b) | T, i ∈ b]]
= E [Row1(T)Col1(T)] .

(7)

4We write IC for the indicator of any event C.
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By similar arguments, we find

E [X | A] =
1
3

E [ f (a)g(b) | i /∈ a, i /∈ b] +
1
3

E [ f (a)g(b) | i ∈ a, i /∈ b] +
1
3

E [ f (a)g(b) | i /∈ a, i ∈ b]

=
1
3

E [Row0(T)Col0(T)] +
1
3

E [Row1(T)Col0(T)] +
1
3

E [Row0(T)Col1(T)] .

Pick an (2`− 1)-subset T2 of [n], that we consider fixed for the time being. The marginal dis-
tributions of a conditioned on the events T2, (T2, i ∈ a) and (T2, i /∈ a) are the same, namely, the
uniform distribution on the `-subsets of [n] \ T2. (Note that fixing T2 does not fix i, which could be
any element of [n] \ T2.) Thus, we get

E [ f (a) | T2, i /∈ a] = E [ f (a) | T2, i ∈ a] = E [ f (a) | T2] . (8)

On the other hand, we have

E [Row0(T) | T2] = E [E [ f (a) | T, i /∈ a] | T2]

= E

[
E [ f (a)Ii/∈a | T]

P [i /∈ a | T]

∣∣∣∣ T2

]
= 2 E [ f (a)Ii/∈a | T2]

= E [ f (a) | T2, i /∈ a]

(9)

and similarly
E [Row1(T) | T2] = E [ f (a) | T2, i ∈ a] .

From (8), we conclude
E [Row0(T) | T2] = E [Row1(T) | T2] .

Therefore (letting T2 vary),

E [Row1(T)Col0(T)] = E [E [Row1(T)Col0(T) | T2]]

= E [E [Row1(T) | T2]Col0(T)]
= E [E [Row0(T) | T2]Col0(T)]
= E [E [Row0(T)Col0(T) | T2]]

= E [Row0(T)Col0(T)] .

The second and fourth equalities above are due to the fact that Col0(T) is constant when T2 is fixed.
This is because Col0(T) = E [g(b) | T, i /∈ b] depends only on T2, as the marginal distribution of b
given (T, i /∈ b) is uniform on the `-subsets of T2.

Exchanging the roles of rows and columns, we have

E [Row1(T)Col0(T)] = E [Row0(T)Col0(T)] .

In conclusion, we find the following simple expression for E [X | A]:

E [X | A] = E [Row0(T)Col0(T)] . (10)
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Step 2: Estimation of E [X | A]−E [X | B]. Using the inequality |x| > x, which is valid for all x ∈ R,
we get

Row1(T) > Row0(T)− |Row0(T)− Row1(T)|, and
Col1(T) > Col0(T)− |Col0(T)−Col1(T)|.

Thus

Row0(T)Col0(T)− Row1(T)Col1(T)
6 Row0(T)Col0(T)− (Row0(T)− |Row0(T)− Row1(T)|) · (Col0(T)− |Col0(T)−Col1(T)|)
6 Row0(T)|Col0(T)−Col1(T)|+ |Row0(T)− Row1(T)|Col0(T).

(11)
This argument is depicted on Figure 2.

Row1(T)

Row0(T) +
= 6 +

Col1(T)

Col0(T)

−

Figure 2: The estimation of Row0(T)Col0(T)− Row1(T)Col1(T).

In Step 3 below, we will define two events, row-big(T) and column-big(T). The event small(T)
is such that small(T) holds if and only if any of the row-big(T) and column-big(T) does not hold.
Thus

1 = Irow-big(T)∩column-big(T) + Ismall(T). (12)

From (11),

(Row0(T)Col0(T)− Row1(T)Col1(T)) · Irow-big(T)∩column-big(T)

6 (Row0(T)|Col0(T)−Col1(T)|+ |Row0(T)− Row1(T)|Col0(T)) · Irow-big(T)∩column-big(T)

6 Row0(T)|Col0(T)−Col1(T)| · Icolumn-big(T) + |Row0(T)− Row1(T)|Col0(T) · Irow-big(T).

Moreover, we obviously have

(Row0(T)Col0(T)− Row1(T)Col1(T)) · Ismall(T) 6 Row0(T)Col0(T) · Ismall(T).

Below, we will prove

E
[
Row0(T)|Col0(T)−Col1(T)| · Icolumn-big(T)

]
6

ε

2
E [Row0(T)Col0(T)] , (13)

E
[
|Row0(T)− Row1(T)|Col0(T) · Irow-big(T)

]
6

ε

2
E [Row0(T)Col0(T)] , and (14)

E
[
Row0(T)Col0(T) · Ismall(T)

]
6 ‖X � (A ∪ B)‖∞ 2−

ε2
16 ln 2−O(log `) (15)
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By (7), (10) and (12), these upper bounds imply

E [X | A]−E [X | B]
= E [Row0(T)Col0(T)− Row1(T)Col1(T)]

= E
[
(Row0(T)Col0(T)− Row1(T)Col1(T)) · (Irow-big(T)∩column-big(T) + Ismall(T))

]
6 2

ε

2
E [Row0(T)Col0(T)] + ‖X � (A ∪ B)‖∞ 2−

ε2
16 ln 2 `−O(log `)

= ε E [X | A] + ‖X � (A ∪ B)‖∞ 2−
ε2

16 ln 2 `−O(log `)

from which the result clearly follows, by rearranging.

Step 3. One-sided error estimation via entropy argument in the “big” case. Let δ > 0 be a constant to be
chosen later. Essentially, δ will be the coefficient of ` in the exponent. Let row-big(T) denote the
event E [ f (a) | T2] > 2−δ`−1

∥∥∥ f � ([n]\T2
` )

∥∥∥
∞
where f � ([n]\T2

` ) denotes the restriction of f to `-subsets
of [n] \ T2. The event column-big(T) is defined in a similar way. These events depend only on T2
and T1, respectively.

Let T2 be fixed and assume that row-big(T) holds. In particular E [ f (a) | T2] is positive. Because
(2`−1
`−1 ) = (2`−1

` ), the probability of a given T2 is the same as the probability of a given T, for every
fixed choice of i. Thus, we have

E [ f (a) | T2] = ∑
x⊆[n]\T2
|x|=`

1

(2`
` )

f (x) = E [ f (a) | T] .

(This holds when f (a) is replaced by any function of a.)
We can define s as a random `-subset of [n] \ T2 with distribution

P [s = x | T2] =
f (x)

(2`
` )E [ f (a) | T2]

=
f (x)

∑y⊆[n]\T2
|y|=`

f (y)
6

2δ`+1

(2`
` )

.

Let us introduce the shorthand notation λ := P [i ∈ s | T2]. Then

λ =

∑ x⊆[n]\T2
|x|=`, x3i

f (x)

∑y⊆[n]\T2
|y|=`

f (y)
=

1
(2`
` )

∑ x⊆[n]\T2
|x|=`, x3i

f (x)

1
(2`
` )

∑y⊆[n]\T2
|y|=`

f (y)
=

E [ f (a)Ii∈a | T]
E [ f (a) | T2]

.

Hence,

Row1(T) = 2 E [ f (a)Ii∈a | T] = 2 E [ f (a) | T2] ·P [i ∈ s | T2] = 2λ E [ f (a) | T2] , (16)

Row0(T) = 2 E [ f (a)Ii/∈a | T] = 2 E [ f (a) | T2] ·P [i /∈ s | T2] = 2(1− λ)E [ f (a) | T2] . (17)

We now estimate the entropy of s. On the one hand, by subadditivity of the entropy, we get the
following upperbound on H (s | T2):

H (s | T2) 6 ∑
j∈[n]\T2

H
(

Ij∈s
∣∣ T2
)
= 2`E [H (λ) | T2] .
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In this last equation, H (λ) denotes the binary entropy of λ. On the other hand, we get a lower
bound on H (s | T2) from our upper bound on the distribution of s (which induces “flatness” of the
distribution):

H (s | T2) = ∑
x

P [s = x | T2] log
1

P [s = x | T2]

>∑
x

P [s = x | T2] log
(2`
` )

2δ`+1 = log
(2`
` )

2δ`+1 = 2`
(

1− δ

2
−O

(
log `

`

))
.

This implies
δ

2
+ O

(
log `

`

)
> E [1− H (λ) | T2] . (18)

To estimate this expression, we use the Taylor expansion of the binary entropy function at 1/2:

1− H (x) >
(1− 2x)2

2 ln 2
.

Hence (18) yields

δ

2
+ O

(
log `

`

)
>

E
[
(1− 2λ)2

∣∣∣ T2

]
2 ln 2

>
(E [|1− 2λ| | T2])

2

2 ln 2
.

From (8), (9) we have E [ f (a) | T2] = E [Row0(T) | T2]. Using (17) and (16), we derive

E [|Row0(T)− Row1(T)| | T2] = E [|2(1− λ)E [ f (a) | T2]− 2λ E [ f (a) | T2] | | T2]

= 2 E [|1− 2λ| | T2]E [ f (a) | T2]

6 2
√

δ′E [Row0(T) | T2] .

with
δ′ :=

(
δ + O

(
log `

`

))
ln 2. (19)

We now globalize to prove (14):

E
[
|Row0(T)− Row1(T)|Col0(T)Irow-big(T)

]
= E

[
E
[
|Row0(T)− Row1(T)|Col0(T)Irow-big(T)

∣∣∣ T2

]]
= E

[
E
[
|Row0(T)− Row1(T)|Irow-big(T)

∣∣∣ T2

]
Col0(T)

]
6 E

[
2
√

δ′E [Row0(T) | T2]Col0(T)
]

= 2
√

δ′E [Row0(T)Col0(T)]

We require ε
2 = 2

√
δ′, from which we express δ in terms of ε using (19):

δ =
δ′

ln 2
−O

(
log `

`

)
=

ε2

16 ln 2
−O

(
log `

`

)
This concludes the proof of (14). Equation (13) follows by exchanging rows and columns.
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Step 4: Error estimation in the “small” case. Suppose that for some given T, small(T) holds because
row-big(T) does not hold (the argument is similar in case column-big(T) does not hold). Then,
using (6),

Row0(T) 6 Row0(T) + Row1(T) = 2 E [ f (a) | T] .

Thus

Row0(T)Col0(T) 6 2 E [ f (a) | T] ·E [g(b) | T, i /∈ b]

6 2−δ`

∥∥∥∥ f (a) �
(
[n] \ T2

`

)∥∥∥∥
∞
·
∥∥∥∥g(b) �

(
T2

`

)∥∥∥∥
∞

6 2−δ`|| f (a)g(b) � (A ∪ B)||∞

This is easily seen to imply (15).

3.2 Lower Bounds for Shifts of Unique Disjointness
Now we apply Lemma 4 to show that the nonnegative rank (and hence the complexity of compu-
tation in expectation) of any shifted version of the unique disjointness matrix remains high. More
precisely, let M ∈ R2n×2n

+ ; for conveniencewe index the rows and columnswith elements in {0, 1}n.
We say that M is a ρ-extension of UDISJ, if Mab = ρ whenever |a ∩ b| = 0 and Mab = ρ− 1 when-
ever |a ∩ b| = 1 with a, b ∈ {0, 1}n. Note that for these pairs M has exclusively positive entries
whenever ρ > 1. For ρ = 1 a nonnegative rank of 2Ω(n) was already shown in Fiorini et al. [2012]
via nondeterministic communication complexity. We now extend this result for a wide range of ρ
using Lemma 4.

Theorem 5 (Nonnegative rank of UDISJ shifts). Let M ∈ R2n×2n

+ be a ρ-extension of UDISJ as above.

(i) If ρ is a fixed constant, then rank+(M) = 2Ω(n).

(ii) If ρ = O(nβ) for some constant β < 1/2 then rank+(M) = 2Ω(n1−2β).

Proof. Without loss of generality, assume n ≡ 3 (mod 4). Let r = rank+(M). Regarding the
2n × 2n matrix M as a function from 2[n] × 2[n] to R, we can write M = ∑r

i=1 Xi where Xi(a, b) =
fi(a)gi(b) for some nonnegative functions fi and gi defined over 2[n]. Then

E [M | A] = ρ and E [M | B] = ρ− 1.

On the other hand, by applying Lemma 4 to each i ∈ [r] and summing up all equations we find

(1− ε)E [M | A]−E [M | B] 6
r

∑
i=1
‖Xi � (A ∪ B)‖∞ 2−

ε2
16 ln 2 `+O(log `)

6 r ‖M � (A ∪ B)‖∞ 2−
ε2

16 ln 2 `+O(log `)

where ` = n+1
4 as before. By plugging in the values of E [M | A], E [M | B] and ‖M � (A ∪ B)‖∞,

we get

(1− ε)ρ− ρ + 1 6 r · ρ · 2− ε2
16 ln 2 `+O(log `) ⇐⇒ r >

(
1
ρ
− ε

)
2

ε2
16 ln 2 `−O(log `).

If ρ is constant, this last expression is 2Ω(n) provided ε is chosen sufficiently close to 0. This
proves part (i) of the theorem.

If ρ 6 Cnβ for some positive constant C, then we can take ε = 1
2Cnβ . Thus 1

ρ − ε > 1
2Cnβ =

Ω(n−β). This leads to the lower bound r > 2Ω(n1−2β) as claimed in part (ii).
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4 Polyhedral Inapproximability of CLIQUE and SDPs
We will now use Theorem 5 in combination with Theorem 2 to lower bound the sizes of certain
approximate EFs. First, we pinpoint a pair P, Q of nested polyhedra that will be the source of our
polyhedral inapproximability results. Second, we give a faithful linear encoding of CLIQUE and
prove strong lower bounds on the sizes of approximate EFs for CLIQUEw.r.t. this encoding. Third,
we focus on approximations of SDPs by LPs.

4.1 A Hard Pair
Let n be a positive integer. The correlation polytope COR(n) is defined as the convex hull of all the
n× n rank-1 binary matrices of the form bbᵀ where b ∈ {0, 1}n. In other words,

COR(n) = conv ({bbᵀ | b ∈ {0, 1}n}) .

This will be our inner polytope P. Next, let

Q = Q(n) := {x ∈ Rn×n | 〈2 diag(a)− aaᵀ, x〉 6 1, a ∈ {0, 1}n},

where 〈·, ·〉 denotes the Frobenius inner product. This will be our outer polyhedron Q.
Then the following is known, see [Fiorini et al., 2012]. First, P ⊆ Q. Second, denoting by SP,Q

the slack matrix of the pair P, Q, we have SP,Q
ab = (1− aᵀb)2. Thus, for ρ > 1, we have SP,ρQ

ab =
(1− aᵀb)2 + ρ− 1. Observe that the matrix SP,ρQ is a ρ-extension of UDISJ and therefore has high
nonnegative rank via Theorem 5; moreover it has positive entries everywhere for ρ > 1. Together
with Theorem 1 this implies that every polyhedron sandwiched between P = COR(n) and ρQ has
large extension complexity. We obtain the following theorem.

Theorem 6 (Lower bounds for approximate EFs of the hard pair). Let ρ > 1, let n be a positive integer
and let P = COR(n), Q = Q(n) be as above. Then the following hold:

(i) If ρ is a fixed constant, then xc(P, ρQ) = 2Ω(n).

(ii) If ρ = O(nβ) for some constant β < 1/2, then xc(P, ρQ) = 2Ω(n1−2β).

4.2 Polyhedral Inapproximability of CLIQUE
We define a natural linear encoding for the maximum clique problem (CLIQUE) as follows. Let
n denote the number of vertices of the input graph. We define a d = n2 dimensional encoding.
The variables are denoted by xij for i, j ∈ [n]. Thus x ∈ Rn×n. The interpretation is that a set of
vertices X is encoded by xij = 1 if i, j ∈ X and xij = 0 otherwise. Note that X = {i : xii = 1} can be
recovered from only the diagonal variables. This defines the set L ⊆ {0, 1}∗ of feasible solutions.
Notice that x ∈ {0, 1}n×n is feasible if and only if it is of the form x = bbᵀ for some b ∈ {0, 1}n, the
characteristic vector of X. Thus we have P = COR(n) for the inner polytope.

An objective function w ∈ Rn×n is admissible if wii ∈ {0, 1} for the diagonal coefficients and
wij = wji ∈ {−1, 0} for the off-diagonal coefficients. This defines the set O ⊆ {−1, 0, 1}∗ of
admissible objective functions.

Given a graph G such that V(G) ⊆ [n], we let wii := 1 for i ∈ V(G), wii := 0 for i ∈ [n] \V(G),
wij = wji := −1 when ij is a non-edge of G, and wij = wji := 0 otherwise. We denote the
resulting weight vector by wG. Notice that for a graph G with V(G) = [n], we have wG = I− A(G)
where I is the n × n identity matrix, A(G) is the adjacency matrix of the complement of G. A
feasible solution x = bbᵀ ∈ {0, 1}n×n maximizes 〈wG, x〉 only if b is the characteristic vector (or
incidence vector) of a clique of G. Indeed, if b = χX and ij is a non-edge of G with i, j ∈ X then
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removing i or j from X increases 〈w, x〉. Moreover, the maximum of 〈wG, x〉 over x ∈ {0, 1}n×n

feasible is the clique number ω(G). Therefore, (L,O) defines a valid linear encoding of CLIQUE.
We denote the outer convex set of this linear encoding by Qall. It is actually the polyhedron defined
as Qall = {x ∈ Rn×n | ∀ graphs G s.t. V(G) ⊆ [n] : 〈wG, x〉 6 ω(G), ∀i 6= j ∈ [n] : xij > 0}. We
will now show that Qall ⊆ Q.

Lemma 7. Let Qall, Q be as above, then Qall ⊆ Q.

Proof. We will show that Q is a relaxation of Qall by restricting to stable sets a ⊆ [n] as graphs.
Let G = (a, ∅) be the stable set supported on a with a ⊆ [n]. Slightly abusing notation, we will
also identify a with its characteristic vector in {0, 1}n. With the definition from above we have
ωa = Ia − A(Ka). Now let x ∈ Rn×n be arbitrary. Clearly, 〈Ia, x〉 = 〈diag(a), x〉 and we have
〈A(Ka), x〉 = 〈aaT, x〉 − 〈diag(a), x〉, where the latter summand comes from the fact that in 〈aaT, x〉
we count the main diagonal, as purported edges (i, i) although they are not counted in 〈A(Ka), x〉.
All in all we obtain

〈ωa, x〉 = 〈Ia− A(Ka), x〉 = 〈diag(a), x〉 − (〈aaT, x〉 − 〈diag(a), x〉) = 〈2 diag(a), x〉 − 〈aaT, x〉 ≤ 1,

where the last inequality follows from ω(G) = 1 as G is a stable set. We conclude Qall ⊆ Q.

Because Qall is contained in the polyhedron Q defined above, every K satisfying P ⊆ K ⊆ ρQall

also satisfies P ⊆ K ⊆ ρQ. Hence, Theorem 6 yields the following result.

Theorem 8 (Polyhedral inapproximability ofCLIQUE). W.r.t. the linear encoding defined above, CLIQUE
has an O(n2)-size n-approximate EF. Moreover, every n1/2−ε-approximate EF of CLIQUE has size 2Ω(n2ε),
for all 0 < ε < 1/2.

Proof. The n-approximate EF of CLIQUE is trivial: it is defined by the system 0 6 x 6 1, or in
slack form x − y = 0, x + z = 1, y > 0, z > 0. We claim that this defines a n-approximate EF of
CLIQUE of size 2n2. Indeed, letting K = [0, 1]n×n denote the polytope defined by this EF, we have
P ⊆ K. Moreover, max{〈w, x〉 | x ∈ K} 6 n 6 n ·max{〈w, x〉 | x ∈ P} for all admissible objective
functions w of dimension n× n with a nonzero diagonal. In case an admissible w has wii = 0 for
all i ∈ [n], we have max{〈w, x〉 | x ∈ K} = 0 = max{〈w, x〉 | x ∈ P}. Our claim and the first part
of the theorem follows.

The second part of the theorem follows directly from Theorem 6 and the fact that Qall ⊆ Q.

4.3 Polyhedral Inapproximability of SDPs
In this section we show that there exists a spectrahedron with small semidefinite extension com-
plexity but high approximate extension complexity; i.e., any sufficiently fine polyhedral approxi-
mation is large. This indicates that in general it is not possible to approximate SDPs arbitrarily well
using LPs, so that SDPs are indeed a much stronger class of optimization problems. (The situa-
tion looks quite different for SOCPs, see Ben-Tal and Nemirovski [2001].) The result follows from
Theorem 6 and Fiorini et al. [2012].

We denote the cone of all r× r symmetric positive semidefinite matrices (shortly, the PSD cone)
by Sr

+. A semidefinite EF of a convex set S ⊆ Rd is a system Ex + Fy = g, y ∈ Sr
+ such that x ∈ S

if and only if ∃y ∈ Rr(r+1)/2 with Ex + Fy = g, y ∈ Sr
+. Thus a convex set admits a semidefinite

EF if and only if it is a spectrahedron. The size of the semidefinite EF Ex + Fy = g, y ∈ Sr
+ is

simply r. The semidefinite extension complexity of a spectrahedron S ⊆ Rd is the minimum size of
a semidefinite EF of S. This is denoted by xcSDP(S). A rank-r PSD-factorization of a nonnegative
matrix M ∈ Rm×n is given by two vectors U ∈ (Sr

+)
m and V ∈ (Sr

+)
n, so that Mij = UiV j where
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the scalar product is the Frobenius product; the PSD-rank of M is the smallest r such that there
exists such a factorization. Yannakakis’ factorization theorem can be generalized to the SDP-case
(see Fiorini et al. [2012]), i.e., the semidefinite extension complexity is equal to the PSD-rank of any
associated slack matrix.

Let P = COR(n) be the correlation polytope and Q = Q(n) ⊆ Rn×n be the polyhedron de-
fined above in Section 4.1. Although every polyhedron K sandwiched between P and Q has super-
polynomial extension complexity (by Theorem 6, this even applies to polyhedra sandwiched be-
tween P and ρQ for ρ = O(n1/2−ε)), there exists a spectrahedron S sandwiched between P and Q
with small semidefinite extension complexity.

Lemma 9 (Existence of spectrahedron). Let n be a positive integer and let P = COR(n), Q = Q(n) be
as above. Then there exists a spectrahedron S in Rn×n with P ⊆ S ⊆ Q and xcSDP(S) 6 n + 1.

Proof. For a, b ∈ {0, 1}n, the matrices Ta, Ub ∈ Sn+1
+ defined in (4) satisfy 〈Ta, Ub〉 = (1− aᵀb)2.

Let M = M(n) ∈ R2n×2n be the matrix defined as Mab = (1− aᵀb)2. The matrix M is a O(n)-rank
nonnegative matrix extending the UDISJ matrix, and also the slack matrix of the pair P, Q. Then
M = TU is a rank-(n + 1) PSD-factorization of M.

For convenience write Q = {x ∈ Rn×n | Ax 6 1} with Ax 6 1 being the defining system from
Section 4.1. Now consider the system Ax + Ty = 1, y ∈ Sn+1

+ and S := {x ∈ Rn×n | ∃y : Ax + Ty =
1, y ∈ Sn+1

+ }. First observe that S ⊆ Q: since Ta ∈ Sn+1
+ for all a ∈ {0, 1}n and y ∈ Sn+1

+ we have
Ty > 0 and thus Ax 6 1 holds for all x ∈ S.

In order to show that P ⊆ S recall that M is the slack matrix of the pair P, Q. Therefore,
for each vertex x := bbᵀ of P, we can pick y := Ub from the factorization such that Ax + Ty =
Ax + 1− Ax = 1 and y ∈ Sn+1

+ . It follows that P ⊆ S.

Our final result is the following inapproximability theorem for spectrahedra.

Theorem 10 (Polyhedral inapproximability of SDPs). Let ρ > 1, and let n be a positive integer. Then
there exists a spectrahedron S ⊆ Rn×n with xcSDP(S) 6 n + 1 such that for every polyhedron K with
S ⊆ K ⊆ ρS the following hold:

(i) If ρ is a fixed constant, then xc(K) = 2Ω(n).

(ii) If ρ = O(nβ) for some constant β < 1/2, then xc(K) = 2Ω(n1−2β).

Proof. We define S as in Lemma 9. Hence, we have P ⊆ S ⊆ Q and xcSDP(S) 6 n + 1. As 0 ∈ S this
implies in particular P ⊆ S ⊆ ρS ⊆ ρQ for ρ > 1. If now K is a polyhedron such that S ⊆ K ⊆ ρS
then it follows P ⊆ K ⊆ ρQ. The result follows from Theorem 6.

5 Concluding Remarks
We have introduced a general framework to study approximation limits of small LP relaxations.
Given a polyhedron Q encoding admissible objective functions and a polytope P encoding feasi-
ble solutions, we have proved that any LP relaxation sandwiched between P and a dilate ρQ has
extension complexity at least the nonnegative rank of the slack matrix of the pair P, ρQ.

This yields a lower bound depending only on the linear encoding of the problem at hand, and
applies independently of the structure of the actual relaxation. By doing so, we obtain unconditional
lower bounds on integrality gaps for small LP relaxations, which hold even in the unlikely event
that P = NP.

We have proved that every polynomial-size LP relaxation for (a natural linear encoding of)
CLIQUE has essentially an Ω(

√
n) integrality gap.
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Finally, our work sheds more light on the inherent limitations of LPs in the context of com-
binatorial optimization and approximation algorithms, in particular, in comparison to SDPs. We
provide strong evidence that certain approximation guarantees can only be achieved via non-LP-
based techniques (e.g., SDP-based or combinatorial).

We are convinced that our framework can be used to obtain strong approximation limits for (LP
relaxations of) of other well-known problems such as Max CUT, Max k-SAT and VERTEX COVER.
The following important question remains open.

Is it possible to show a constant-factor polyhedral inapproximability for Max CUT with non-
negative weights (and similarly for VERTEX COVER andmany more) for any polynomial-size LP?
We conjecture that it is not possible to approximate Max CUTwith LPs of poly-size within a factor
better than 2. This would be in stark contrast with the ratio achieved by the SDP-based algorithm
of Goemans and Williamson [1995] which is known to be optimal, assuming the Unique Games
Conjecture Khot [2002], Khot et al. [2004], Mossel et al. [2005].

So far no strong lower bounding technique for semidefinite EFs are known. It is plausible that
in the near future we will see lower bounding techniques on the PSD rank that would be suited for
studying approximation limits of SDPs. (We remark however that such bounds should not only
argue on the zero/nonzero pattern of a slack matrix.)
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